summaryrefslogtreecommitdiff
path: root/theories/NArith/Nnat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/NArith/Nnat.v')
-rw-r--r--theories/NArith/Nnat.v450
1 files changed, 156 insertions, 294 deletions
diff --git a/theories/NArith/Nnat.v b/theories/NArith/Nnat.v
index f57fab0f..1b7e2f24 100644
--- a/theories/NArith/Nnat.v
+++ b/theories/NArith/Nnat.v
@@ -1,370 +1,232 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Nnat.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
-Require Import Arith_base.
-Require Import Compare_dec.
-Require Import Sumbool.
-Require Import Div2.
-Require Import Min.
-Require Import Max.
-Require Import BinPos.
-Require Import BinNat.
-Require Import BinInt.
-Require Import Pnat.
-Require Import Zmax.
-Require Import Zmin.
-Require Import Znat.
-
-(** Translation from [N] to [nat] and back. *)
-
-Definition nat_of_N (a:N) :=
- match a with
- | N0 => 0%nat
- | Npos p => nat_of_P p
- end.
-
-Definition N_of_nat (n:nat) :=
- match n with
- | O => N0
- | S n' => Npos (P_of_succ_nat n')
- end.
-
-Lemma N_of_nat_of_N : forall a:N, N_of_nat (nat_of_N a) = a.
-Proof.
- destruct a as [| p]. reflexivity.
- simpl in |- *. elim (ZL4 p). intros n H. rewrite H. simpl in |- *.
- rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ in H.
- rewrite nat_of_P_inj with (1 := H). reflexivity.
-Qed.
-
-Lemma nat_of_N_of_nat : forall n:nat, nat_of_N (N_of_nat n) = n.
-Proof.
- induction n. trivial.
- intros. simpl in |- *. apply nat_of_P_o_P_of_succ_nat_eq_succ.
-Qed.
-
-(** Interaction of this translation and usual operations. *)
-
-Lemma nat_of_Ndouble : forall a, nat_of_N (Ndouble a) = 2*(nat_of_N a).
-Proof.
- destruct a; simpl nat_of_N; auto.
- apply nat_of_P_xO.
-Qed.
-
-Lemma N_of_double : forall n, N_of_nat (2*n) = Ndouble (N_of_nat n).
-Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- rewrite <- nat_of_Ndouble.
- apply N_of_nat_of_N.
-Qed.
-
-Lemma nat_of_Ndouble_plus_one :
- forall a, nat_of_N (Ndouble_plus_one a) = S (2*(nat_of_N a)).
-Proof.
- destruct a; simpl nat_of_N; auto.
- apply nat_of_P_xI.
-Qed.
-
-Lemma N_of_double_plus_one :
- forall n, N_of_nat (S (2*n)) = Ndouble_plus_one (N_of_nat n).
-Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- rewrite <- nat_of_Ndouble_plus_one.
- apply N_of_nat_of_N.
-Qed.
-
-Lemma nat_of_Nsucc : forall a, nat_of_N (Nsucc a) = S (nat_of_N a).
-Proof.
- destruct a; simpl.
- apply nat_of_P_xH.
- apply nat_of_P_succ_morphism.
-Qed.
-
-Lemma N_of_S : forall n, N_of_nat (S n) = Nsucc (N_of_nat n).
-Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- rewrite <- nat_of_Nsucc.
- apply N_of_nat_of_N.
-Qed.
-
-Lemma nat_of_Nplus :
- forall a a', nat_of_N (Nplus a a') = (nat_of_N a)+(nat_of_N a').
-Proof.
- destruct a; destruct a'; simpl; auto.
- apply nat_of_P_plus_morphism.
-Qed.
-
-Lemma N_of_plus :
- forall n n', N_of_nat (n+n') = Nplus (N_of_nat n) (N_of_nat n').
-Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
- rewrite <- nat_of_Nplus.
- apply N_of_nat_of_N.
-Qed.
-
-Lemma nat_of_Nminus :
- forall a a', nat_of_N (Nminus a a') = ((nat_of_N a)-(nat_of_N a'))%nat.
-Proof.
- destruct a; destruct a'; simpl; auto with arith.
- case_eq (Pcompare p p0 Eq); simpl; intros.
- rewrite (Pcompare_Eq_eq _ _ H); auto with arith.
- rewrite Pminus_mask_diag. simpl. apply minus_n_n.
- rewrite Pminus_mask_Lt. pose proof (nat_of_P_lt_Lt_compare_morphism _ _ H). simpl.
- symmetry; apply not_le_minus_0. auto with arith. assumption.
- pose proof (Pminus_mask_Gt p p0 H) as H1. destruct H1 as [q [H1 _]]. rewrite H1; simpl.
- replace q with (Pminus p p0) by (unfold Pminus; now rewrite H1).
- apply nat_of_P_minus_morphism; auto.
-Qed.
-
-Lemma N_of_minus :
- forall n n', N_of_nat (n-n') = Nminus (N_of_nat n) (N_of_nat n').
-Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
- rewrite <- nat_of_Nminus.
- apply N_of_nat_of_N.
-Qed.
-
-Lemma nat_of_Nmult :
- forall a a', nat_of_N (Nmult a a') = (nat_of_N a)*(nat_of_N a').
-Proof.
- destruct a; destruct a'; simpl; auto.
- apply nat_of_P_mult_morphism.
-Qed.
+Require Import Arith_base Compare_dec Sumbool Div2 Min Max.
+Require Import BinPos BinNat Pnat.
-Lemma N_of_mult :
- forall n n', N_of_nat (n*n') = Nmult (N_of_nat n) (N_of_nat n').
-Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
- rewrite <- nat_of_Nmult.
- apply N_of_nat_of_N.
-Qed.
-
-Lemma nat_of_Ndiv2 :
- forall a, nat_of_N (Ndiv2 a) = div2 (nat_of_N a).
-Proof.
- destruct a; simpl in *; auto.
- destruct p; auto.
- rewrite nat_of_P_xI.
- rewrite div2_double_plus_one; auto.
- rewrite nat_of_P_xO.
- rewrite div2_double; auto.
-Qed.
-
-Lemma N_of_div2 :
- forall n, N_of_nat (div2 n) = Ndiv2 (N_of_nat n).
-Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- rewrite <- nat_of_Ndiv2.
- apply N_of_nat_of_N.
-Qed.
-
-Lemma nat_of_Ncompare :
- forall a a', Ncompare a a' = nat_compare (nat_of_N a) (nat_of_N a').
-Proof.
- destruct a; destruct a'; simpl.
- reflexivity.
- assert (NZ : 0 < nat_of_P p) by auto using lt_O_nat_of_P.
- destruct nat_of_P; [inversion NZ|auto].
- assert (NZ : 0 < nat_of_P p) by auto using lt_O_nat_of_P.
- destruct nat_of_P; [inversion NZ|auto].
- apply nat_of_P_compare_morphism.
-Qed.
+(** * Conversions from [N] to [nat] *)
-Lemma N_of_nat_compare :
- forall n n', nat_compare n n' = Ncompare (N_of_nat n) (N_of_nat n').
-Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
- symmetry; apply nat_of_Ncompare.
-Qed.
+Module N2Nat.
-Lemma nat_of_Nmin :
- forall a a', nat_of_N (Nmin a a') = min (nat_of_N a) (nat_of_N a').
-Proof.
- intros; unfold Nmin; rewrite nat_of_Ncompare.
- rewrite nat_compare_equiv; unfold nat_compare_alt.
- destruct (lt_eq_lt_dec (nat_of_N a) (nat_of_N a')) as [[|]|];
- simpl; intros; symmetry; auto with arith.
- apply min_l; rewrite e; auto with arith.
-Qed.
+(** [N.to_nat] is a bijection between [N] and [nat],
+ with [Pos.of_nat] as reciprocal.
+ See [Nat2N.id] below for the dual equation. *)
-Lemma N_of_min :
- forall n n', N_of_nat (min n n') = Nmin (N_of_nat n) (N_of_nat n').
+Lemma id a : N.of_nat (N.to_nat a) = a.
Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
- rewrite <- nat_of_Nmin.
- apply N_of_nat_of_N.
+ destruct a as [| p]; simpl; trivial.
+ destruct (Pos2Nat.is_succ p) as (n,H). rewrite H. simpl. f_equal.
+ apply Pos2Nat.inj. rewrite H. apply SuccNat2Pos.id_succ.
Qed.
-Lemma nat_of_Nmax :
- forall a a', nat_of_N (Nmax a a') = max (nat_of_N a) (nat_of_N a').
-Proof.
- intros; unfold Nmax; rewrite nat_of_Ncompare.
- rewrite nat_compare_equiv; unfold nat_compare_alt.
- destruct (lt_eq_lt_dec (nat_of_N a) (nat_of_N a')) as [[|]|];
- simpl; intros; symmetry; auto with arith.
- apply max_r; rewrite e; auto with arith.
-Qed.
+(** [N.to_nat] is hence injective *)
-Lemma N_of_max :
- forall n n', N_of_nat (max n n') = Nmax (N_of_nat n) (N_of_nat n').
+Lemma inj a a' : N.to_nat a = N.to_nat a' -> a = a'.
Proof.
- intros.
- pattern n at 1; rewrite <- (nat_of_N_of_nat n).
- pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
- rewrite <- nat_of_Nmax.
- apply N_of_nat_of_N.
+ intro H. rewrite <- (id a), <- (id a'). now f_equal.
Qed.
-(** Properties concerning [Z_of_N] *)
-
-Lemma Z_of_nat_of_N : forall n:N, Z_of_nat (nat_of_N n) = Z_of_N n.
+Lemma inj_iff a a' : N.to_nat a = N.to_nat a' <-> a = a'.
Proof.
- destruct n; simpl; auto; symmetry; apply Zpos_eq_Z_of_nat_o_nat_of_P.
+ split. apply inj. intros; now subst.
Qed.
-Lemma Z_of_N_eq : forall n m, n = m -> Z_of_N n = Z_of_N m.
-Proof.
- intros; f_equal; assumption.
-Qed.
+(** Interaction of this translation and usual operations. *)
-Lemma Z_of_N_eq_rev : forall n m, Z_of_N n = Z_of_N m -> n = m.
+Lemma inj_double a : N.to_nat (N.double a) = 2*(N.to_nat a).
Proof.
- intros [|n] [|m]; simpl; intros; try discriminate; congruence.
+ destruct a; simpl N.to_nat; trivial. apply Pos2Nat.inj_xO.
Qed.
-Lemma Z_of_N_eq_iff : forall n m, n = m <-> Z_of_N n = Z_of_N m.
+Lemma inj_succ_double a : N.to_nat (N.succ_double a) = S (2*(N.to_nat a)).
Proof.
- split; [apply Z_of_N_eq | apply Z_of_N_eq_rev].
+ destruct a; simpl N.to_nat; trivial. apply Pos2Nat.inj_xI.
Qed.
-Lemma Z_of_N_le : forall n m, (n<=m)%N -> (Z_of_N n <= Z_of_N m)%Z.
+Lemma inj_succ a : N.to_nat (N.succ a) = S (N.to_nat a).
Proof.
- intros [|n] [|m]; simpl; auto.
+ destruct a; simpl; trivial. apply Pos2Nat.inj_succ.
Qed.
-Lemma Z_of_N_le_rev : forall n m, (Z_of_N n <= Z_of_N m)%Z -> (n<=m)%N.
+Lemma inj_add a a' :
+ N.to_nat (a + a') = N.to_nat a + N.to_nat a'.
Proof.
- intros [|n] [|m]; simpl; auto.
+ destruct a, a'; simpl; trivial. apply Pos2Nat.inj_add.
Qed.
-Lemma Z_of_N_le_iff : forall n m, (n<=m)%N <-> (Z_of_N n <= Z_of_N m)%Z.
+Lemma inj_mul a a' :
+ N.to_nat (a * a') = N.to_nat a * N.to_nat a'.
Proof.
- split; [apply Z_of_N_le | apply Z_of_N_le_rev].
+ destruct a, a'; simpl; trivial. apply Pos2Nat.inj_mul.
Qed.
-Lemma Z_of_N_lt : forall n m, (n<m)%N -> (Z_of_N n < Z_of_N m)%Z.
+Lemma inj_sub a a' :
+ N.to_nat (a - a') = N.to_nat a - N.to_nat a'.
Proof.
- intros [|n] [|m]; simpl; auto.
+ destruct a as [|a], a' as [|a']; simpl; auto with arith.
+ destruct (Pos.compare_spec a a').
+ subst. now rewrite Pos.sub_mask_diag, <- minus_n_n.
+ rewrite Pos.sub_mask_neg; trivial. apply Pos2Nat.inj_lt in H.
+ simpl; symmetry; apply not_le_minus_0; auto with arith.
+ destruct (Pos.sub_mask_pos' _ _ H) as (q & -> & Hq).
+ simpl. apply plus_minus. now rewrite <- Hq, Pos2Nat.inj_add.
Qed.
-Lemma Z_of_N_lt_rev : forall n m, (Z_of_N n < Z_of_N m)%Z -> (n<m)%N.
+Lemma inj_pred a : N.to_nat (N.pred a) = pred (N.to_nat a).
Proof.
- intros [|n] [|m]; simpl; auto.
+ intros. rewrite pred_of_minus, N.pred_sub. apply inj_sub.
Qed.
-Lemma Z_of_N_lt_iff : forall n m, (n<m)%N <-> (Z_of_N n < Z_of_N m)%Z.
+Lemma inj_div2 a : N.to_nat (N.div2 a) = div2 (N.to_nat a).
Proof.
- split; [apply Z_of_N_lt | apply Z_of_N_lt_rev].
+ destruct a as [|[p|p| ]]; trivial.
+ simpl N.to_nat. now rewrite Pos2Nat.inj_xI, div2_double_plus_one.
+ simpl N.to_nat. now rewrite Pos2Nat.inj_xO, div2_double.
Qed.
-Lemma Z_of_N_ge : forall n m, (n>=m)%N -> (Z_of_N n >= Z_of_N m)%Z.
+Lemma inj_compare a a' :
+ (a ?= a')%N = nat_compare (N.to_nat a) (N.to_nat a').
Proof.
- intros [|n] [|m]; simpl; auto.
+ destruct a, a'; simpl; trivial.
+ now destruct (Pos2Nat.is_succ p) as (n,->).
+ now destruct (Pos2Nat.is_succ p) as (n,->).
+ apply Pos2Nat.inj_compare.
Qed.
-Lemma Z_of_N_ge_rev : forall n m, (Z_of_N n >= Z_of_N m)%Z -> (n>=m)%N.
+Lemma inj_max a a' :
+ N.to_nat (N.max a a') = max (N.to_nat a) (N.to_nat a').
Proof.
- intros [|n] [|m]; simpl; auto.
+ unfold N.max. rewrite inj_compare; symmetry.
+ case nat_compare_spec; intros H; try rewrite H; auto with arith.
Qed.
-Lemma Z_of_N_ge_iff : forall n m, (n>=m)%N <-> (Z_of_N n >= Z_of_N m)%Z.
+Lemma inj_min a a' :
+ N.to_nat (N.min a a') = min (N.to_nat a) (N.to_nat a').
Proof.
- split; [apply Z_of_N_ge | apply Z_of_N_ge_rev].
+ unfold N.min; rewrite inj_compare. symmetry.
+ case nat_compare_spec; intros H; try rewrite H; auto with arith.
Qed.
-Lemma Z_of_N_gt : forall n m, (n>m)%N -> (Z_of_N n > Z_of_N m)%Z.
+Lemma inj_iter a {A} (f:A->A) (x:A) :
+ N.iter a f x = nat_iter (N.to_nat a) f x.
Proof.
- intros [|n] [|m]; simpl; auto.
+ destruct a as [|a]. trivial. apply Pos2Nat.inj_iter.
Qed.
-Lemma Z_of_N_gt_rev : forall n m, (Z_of_N n > Z_of_N m)%Z -> (n>m)%N.
-Proof.
- intros [|n] [|m]; simpl; auto.
-Qed.
+End N2Nat.
-Lemma Z_of_N_gt_iff : forall n m, (n>m)%N <-> (Z_of_N n > Z_of_N m)%Z.
-Proof.
- split; [apply Z_of_N_gt | apply Z_of_N_gt_rev].
-Qed.
+Hint Rewrite N2Nat.inj_double N2Nat.inj_succ_double
+ N2Nat.inj_succ N2Nat.inj_add N2Nat.inj_mul N2Nat.inj_sub
+ N2Nat.inj_pred N2Nat.inj_div2 N2Nat.inj_max N2Nat.inj_min
+ N2Nat.id
+ : Nnat.
-Lemma Z_of_N_of_nat : forall n:nat, Z_of_N (N_of_nat n) = Z_of_nat n.
-Proof.
- destruct n; simpl; auto.
-Qed.
-Lemma Z_of_N_pos : forall p:positive, Z_of_N (Npos p) = Zpos p.
-Proof.
- destruct p; simpl; auto.
-Qed.
+(** * Conversions from [nat] to [N] *)
-Lemma Z_of_N_abs : forall z:Z, Z_of_N (Zabs_N z) = Zabs z.
-Proof.
- destruct z; simpl; auto.
-Qed.
+Module Nat2N.
-Lemma Z_of_N_le_0 : forall n, (0 <= Z_of_N n)%Z.
-Proof.
- destruct n; intro; discriminate.
-Qed.
+(** [N.of_nat] is an bijection between [nat] and [N],
+ with [Pos.to_nat] as reciprocal.
+ See [N2Nat.id] above for the dual equation. *)
-Lemma Z_of_N_plus : forall n m:N, Z_of_N (n+m) = (Z_of_N n + Z_of_N m)%Z.
+Lemma id n : N.to_nat (N.of_nat n) = n.
Proof.
- destruct n; destruct m; auto.
+ induction n; simpl; trivial. apply SuccNat2Pos.id_succ.
Qed.
-Lemma Z_of_N_mult : forall n m:N, Z_of_N (n*m) = (Z_of_N n * Z_of_N m)%Z.
-Proof.
- destruct n; destruct m; auto.
-Qed.
+Hint Rewrite id : Nnat.
+Ltac nat2N := apply N2Nat.inj; now autorewrite with Nnat.
-Lemma Z_of_N_minus : forall n m:N, Z_of_N (n-m) = Zmax 0 (Z_of_N n - Z_of_N m).
-Proof.
- intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nminus; apply inj_minus.
-Qed.
+(** [N.of_nat] is hence injective *)
-Lemma Z_of_N_succ : forall n:N, Z_of_N (Nsucc n) = Zsucc (Z_of_N n).
+Lemma inj n n' : N.of_nat n = N.of_nat n' -> n = n'.
Proof.
- intros; do 2 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nsucc; apply inj_S.
+ intros H. rewrite <- (id n), <- (id n'). now f_equal.
Qed.
-Lemma Z_of_N_min : forall n m:N, Z_of_N (Nmin n m) = Zmin (Z_of_N n) (Z_of_N m).
+Lemma inj_iff n n' : N.of_nat n = N.of_nat n' <-> n = n'.
Proof.
- intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nmin; apply inj_min.
+ split. apply inj. intros; now subst.
Qed.
-Lemma Z_of_N_max : forall n m:N, Z_of_N (Nmax n m) = Zmax (Z_of_N n) (Z_of_N m).
-Proof.
- intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nmax; apply inj_max.
-Qed.
+(** Interaction of this translation and usual operations. *)
+Lemma inj_double n : N.of_nat (2*n) = N.double (N.of_nat n).
+Proof. nat2N. Qed.
+
+Lemma inj_succ_double n : N.of_nat (S (2*n)) = N.succ_double (N.of_nat n).
+Proof. nat2N. Qed.
+
+Lemma inj_succ n : N.of_nat (S n) = N.succ (N.of_nat n).
+Proof. nat2N. Qed.
+
+Lemma inj_pred n : N.of_nat (pred n) = N.pred (N.of_nat n).
+Proof. nat2N. Qed.
+
+Lemma inj_add n n' : N.of_nat (n+n') = (N.of_nat n + N.of_nat n')%N.
+Proof. nat2N. Qed.
+
+Lemma inj_sub n n' : N.of_nat (n-n') = (N.of_nat n - N.of_nat n')%N.
+Proof. nat2N. Qed.
+
+Lemma inj_mul n n' : N.of_nat (n*n') = (N.of_nat n * N.of_nat n')%N.
+Proof. nat2N. Qed.
+
+Lemma inj_div2 n : N.of_nat (div2 n) = N.div2 (N.of_nat n).
+Proof. nat2N. Qed.
+
+Lemma inj_compare n n' :
+ nat_compare n n' = (N.of_nat n ?= N.of_nat n')%N.
+Proof. now rewrite N2Nat.inj_compare, !id. Qed.
+
+Lemma inj_min n n' :
+ N.of_nat (min n n') = N.min (N.of_nat n) (N.of_nat n').
+Proof. nat2N. Qed.
+
+Lemma inj_max n n' :
+ N.of_nat (max n n') = N.max (N.of_nat n) (N.of_nat n').
+Proof. nat2N. Qed.
+
+Lemma inj_iter n {A} (f:A->A) (x:A) :
+ nat_iter n f x = N.iter (N.of_nat n) f x.
+Proof. now rewrite N2Nat.inj_iter, !id. Qed.
+
+End Nat2N.
+
+Hint Rewrite Nat2N.id : Nnat.
+
+(** Compatibility notations *)
+
+Notation nat_of_N_inj := N2Nat.inj (compat "8.3").
+Notation N_of_nat_of_N := N2Nat.id (compat "8.3").
+Notation nat_of_Ndouble := N2Nat.inj_double (compat "8.3").
+Notation nat_of_Ndouble_plus_one := N2Nat.inj_succ_double (compat "8.3").
+Notation nat_of_Nsucc := N2Nat.inj_succ (compat "8.3").
+Notation nat_of_Nplus := N2Nat.inj_add (compat "8.3").
+Notation nat_of_Nmult := N2Nat.inj_mul (compat "8.3").
+Notation nat_of_Nminus := N2Nat.inj_sub (compat "8.3").
+Notation nat_of_Npred := N2Nat.inj_pred (compat "8.3").
+Notation nat_of_Ndiv2 := N2Nat.inj_div2 (compat "8.3").
+Notation nat_of_Ncompare := N2Nat.inj_compare (compat "8.3").
+Notation nat_of_Nmax := N2Nat.inj_max (compat "8.3").
+Notation nat_of_Nmin := N2Nat.inj_min (compat "8.3").
+
+Notation nat_of_N_of_nat := Nat2N.id (compat "8.3").
+Notation N_of_nat_inj := Nat2N.inj (compat "8.3").
+Notation N_of_double := Nat2N.inj_double (compat "8.3").
+Notation N_of_double_plus_one := Nat2N.inj_succ_double (compat "8.3").
+Notation N_of_S := Nat2N.inj_succ (compat "8.3").
+Notation N_of_pred := Nat2N.inj_pred (compat "8.3").
+Notation N_of_plus := Nat2N.inj_add (compat "8.3").
+Notation N_of_minus := Nat2N.inj_sub (compat "8.3").
+Notation N_of_mult := Nat2N.inj_mul (compat "8.3").
+Notation N_of_div2 := Nat2N.inj_div2 (compat "8.3").
+Notation N_of_nat_compare := Nat2N.inj_compare (compat "8.3").
+Notation N_of_min := Nat2N.inj_min (compat "8.3").
+Notation N_of_max := Nat2N.inj_max (compat "8.3").