diff options
Diffstat (limited to 'theories/NArith/Nminmax.v')
-rw-r--r-- | theories/NArith/Nminmax.v | 126 |
1 files changed, 0 insertions, 126 deletions
diff --git a/theories/NArith/Nminmax.v b/theories/NArith/Nminmax.v deleted file mode 100644 index 58184a4f..00000000 --- a/theories/NArith/Nminmax.v +++ /dev/null @@ -1,126 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -Require Import Orders BinNat Nnat NOrderedType GenericMinMax. - -(** * Maximum and Minimum of two [N] numbers *) - -Local Open Scope N_scope. - -(** The functions [Nmax] and [Nmin] implement indeed - a maximum and a minimum *) - -Lemma Nmax_l : forall x y, y<=x -> Nmax x y = x. -Proof. - unfold Nle, Nmax. intros x y. - generalize (Ncompare_eq_correct x y). rewrite <- (Ncompare_antisym x y). - destruct (x ?= y); intuition. -Qed. - -Lemma Nmax_r : forall x y, x<=y -> Nmax x y = y. -Proof. - unfold Nle, Nmax. intros x y. destruct (x ?= y); intuition. -Qed. - -Lemma Nmin_l : forall x y, x<=y -> Nmin x y = x. -Proof. - unfold Nle, Nmin. intros x y. destruct (x ?= y); intuition. -Qed. - -Lemma Nmin_r : forall x y, y<=x -> Nmin x y = y. -Proof. - unfold Nle, Nmin. intros x y. - generalize (Ncompare_eq_correct x y). rewrite <- (Ncompare_antisym x y). - destruct (x ?= y); intuition. -Qed. - -Module NHasMinMax <: HasMinMax N_as_OT. - Definition max := Nmax. - Definition min := Nmin. - Definition max_l := Nmax_l. - Definition max_r := Nmax_r. - Definition min_l := Nmin_l. - Definition min_r := Nmin_r. -End NHasMinMax. - -Module N. - -(** We obtain hence all the generic properties of max and min. *) - -Include UsualMinMaxProperties N_as_OT NHasMinMax. - -(** * Properties specific to the [positive] domain *) - -(** Simplifications *) - -Lemma max_0_l : forall n, Nmax 0 n = n. -Proof. - intros. unfold Nmax. rewrite <- Ncompare_antisym. generalize (Ncompare_0 n). - destruct (n ?= 0); intuition. -Qed. - -Lemma max_0_r : forall n, Nmax n 0 = n. -Proof. intros. rewrite N.max_comm. apply max_0_l. Qed. - -Lemma min_0_l : forall n, Nmin 0 n = 0. -Proof. - intros. unfold Nmin. rewrite <- Ncompare_antisym. generalize (Ncompare_0 n). - destruct (n ?= 0); intuition. -Qed. - -Lemma min_0_r : forall n, Nmin n 0 = 0. -Proof. intros. rewrite N.min_comm. apply min_0_l. Qed. - -(** Compatibilities (consequences of monotonicity) *) - -Lemma succ_max_distr : - forall n m, Nsucc (Nmax n m) = Nmax (Nsucc n) (Nsucc m). -Proof. - intros. symmetry. apply max_monotone. - intros x x'. unfold Nle. - rewrite 2 nat_of_Ncompare, 2 nat_of_Nsucc. - simpl; auto. -Qed. - -Lemma succ_min_distr : forall n m, Nsucc (Nmin n m) = Nmin (Nsucc n) (Nsucc m). -Proof. - intros. symmetry. apply min_monotone. - intros x x'. unfold Nle. - rewrite 2 nat_of_Ncompare, 2 nat_of_Nsucc. - simpl; auto. -Qed. - -Lemma plus_max_distr_l : forall n m p, Nmax (p + n) (p + m) = p + Nmax n m. -Proof. - intros. apply max_monotone. - intros x x'. unfold Nle. - rewrite 2 nat_of_Ncompare, 2 nat_of_Nplus. - rewrite <- 2 Compare_dec.nat_compare_le. auto with arith. -Qed. - -Lemma plus_max_distr_r : forall n m p, Nmax (n + p) (m + p) = Nmax n m + p. -Proof. - intros. rewrite (Nplus_comm n p), (Nplus_comm m p), (Nplus_comm _ p). - apply plus_max_distr_l. -Qed. - -Lemma plus_min_distr_l : forall n m p, Nmin (p + n) (p + m) = p + Nmin n m. -Proof. - intros. apply min_monotone. - intros x x'. unfold Nle. - rewrite 2 nat_of_Ncompare, 2 nat_of_Nplus. - rewrite <- 2 Compare_dec.nat_compare_le. auto with arith. -Qed. - -Lemma plus_min_distr_r : forall n m p, Nmin (n + p) (m + p) = Nmin n m + p. -Proof. - intros. rewrite (Nplus_comm n p), (Nplus_comm m p), (Nplus_comm _ p). - apply plus_min_distr_l. -Qed. - -End N.
\ No newline at end of file |