summaryrefslogtreecommitdiff
path: root/theories/NArith/BinPos.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/NArith/BinPos.v')
-rw-r--r--theories/NArith/BinPos.v961
1 files changed, 961 insertions, 0 deletions
diff --git a/theories/NArith/BinPos.v b/theories/NArith/BinPos.v
new file mode 100644
index 00000000..fffb10c1
--- /dev/null
+++ b/theories/NArith/BinPos.v
@@ -0,0 +1,961 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: BinPos.v,v 1.7.2.1 2004/07/16 19:31:07 herbelin Exp $ i*)
+
+(**********************************************************************)
+(** Binary positive numbers *)
+
+(** Original development by Pierre Crégut, CNET, Lannion, France *)
+
+Inductive positive : Set :=
+ | xI : positive -> positive
+ | xO : positive -> positive
+ | xH : positive.
+
+(** Declare binding key for scope positive_scope *)
+
+Delimit Scope positive_scope with positive.
+
+(** Automatically open scope positive_scope for type positive, xO and xI *)
+
+Bind Scope positive_scope with positive.
+Arguments Scope xO [positive_scope].
+Arguments Scope xI [positive_scope].
+
+(** Successor *)
+
+Fixpoint Psucc (x:positive) : positive :=
+ match x with
+ | xI x' => xO (Psucc x')
+ | xO x' => xI x'
+ | xH => xO xH
+ end.
+
+(** Addition *)
+
+Fixpoint Pplus (x y:positive) {struct x} : positive :=
+ match x, y with
+ | xI x', xI y' => xO (Pplus_carry x' y')
+ | xI x', xO y' => xI (Pplus x' y')
+ | xI x', xH => xO (Psucc x')
+ | xO x', xI y' => xI (Pplus x' y')
+ | xO x', xO y' => xO (Pplus x' y')
+ | xO x', xH => xI x'
+ | xH, xI y' => xO (Psucc y')
+ | xH, xO y' => xI y'
+ | xH, xH => xO xH
+ end
+
+ with Pplus_carry (x y:positive) {struct x} : positive :=
+ match x, y with
+ | xI x', xI y' => xI (Pplus_carry x' y')
+ | xI x', xO y' => xO (Pplus_carry x' y')
+ | xI x', xH => xI (Psucc x')
+ | xO x', xI y' => xO (Pplus_carry x' y')
+ | xO x', xO y' => xI (Pplus x' y')
+ | xO x', xH => xO (Psucc x')
+ | xH, xI y' => xI (Psucc y')
+ | xH, xO y' => xO (Psucc y')
+ | xH, xH => xI xH
+ end.
+
+Infix "+" := Pplus : positive_scope.
+
+Open Local Scope positive_scope.
+
+(** From binary positive numbers to Peano natural numbers *)
+
+Fixpoint Pmult_nat (x:positive) (pow2:nat) {struct x} : nat :=
+ match x with
+ | xI x' => (pow2 + Pmult_nat x' (pow2 + pow2))%nat
+ | xO x' => Pmult_nat x' (pow2 + pow2)%nat
+ | xH => pow2
+ end.
+
+Definition nat_of_P (x:positive) := Pmult_nat x 1.
+
+(** From Peano natural numbers to binary positive numbers *)
+
+Fixpoint P_of_succ_nat (n:nat) : positive :=
+ match n with
+ | O => xH
+ | S x' => Psucc (P_of_succ_nat x')
+ end.
+
+(** Operation x -> 2*x-1 *)
+
+Fixpoint Pdouble_minus_one (x:positive) : positive :=
+ match x with
+ | xI x' => xI (xO x')
+ | xO x' => xI (Pdouble_minus_one x')
+ | xH => xH
+ end.
+
+(** Predecessor *)
+
+Definition Ppred (x:positive) :=
+ match x with
+ | xI x' => xO x'
+ | xO x' => Pdouble_minus_one x'
+ | xH => xH
+ end.
+
+(** An auxiliary type for subtraction *)
+
+Inductive positive_mask : Set :=
+ | IsNul : positive_mask
+ | IsPos : positive -> positive_mask
+ | IsNeg : positive_mask.
+
+(** Operation x -> 2*x+1 *)
+
+Definition Pdouble_plus_one_mask (x:positive_mask) :=
+ match x with
+ | IsNul => IsPos xH
+ | IsNeg => IsNeg
+ | IsPos p => IsPos (xI p)
+ end.
+
+(** Operation x -> 2*x *)
+
+Definition Pdouble_mask (x:positive_mask) :=
+ match x with
+ | IsNul => IsNul
+ | IsNeg => IsNeg
+ | IsPos p => IsPos (xO p)
+ end.
+
+(** Operation x -> 2*x-2 *)
+
+Definition Pdouble_minus_two (x:positive) :=
+ match x with
+ | xI x' => IsPos (xO (xO x'))
+ | xO x' => IsPos (xO (Pdouble_minus_one x'))
+ | xH => IsNul
+ end.
+
+(** Subtraction of binary positive numbers into a positive numbers mask *)
+
+Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask :=
+ match x, y with
+ | xI x', xI y' => Pdouble_mask (Pminus_mask x' y')
+ | xI x', xO y' => Pdouble_plus_one_mask (Pminus_mask x' y')
+ | xI x', xH => IsPos (xO x')
+ | xO x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
+ | xO x', xO y' => Pdouble_mask (Pminus_mask x' y')
+ | xO x', xH => IsPos (Pdouble_minus_one x')
+ | xH, xH => IsNul
+ | xH, _ => IsNeg
+ end
+
+ with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
+ match x, y with
+ | xI x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
+ | xI x', xO y' => Pdouble_mask (Pminus_mask x' y')
+ | xI x', xH => IsPos (Pdouble_minus_one x')
+ | xO x', xI y' => Pdouble_mask (Pminus_mask_carry x' y')
+ | xO x', xO y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
+ | xO x', xH => Pdouble_minus_two x'
+ | xH, _ => IsNeg
+ end.
+
+(** Subtraction of binary positive numbers x and y, returns 1 if x<=y *)
+
+Definition Pminus (x y:positive) :=
+ match Pminus_mask x y with
+ | IsPos z => z
+ | _ => xH
+ end.
+
+Infix "-" := Pminus : positive_scope.
+
+(** Multiplication on binary positive numbers *)
+
+Fixpoint Pmult (x y:positive) {struct x} : positive :=
+ match x with
+ | xI x' => y + xO (Pmult x' y)
+ | xO x' => xO (Pmult x' y)
+ | xH => y
+ end.
+
+Infix "*" := Pmult : positive_scope.
+
+(** Division by 2 rounded below but for 1 *)
+
+Definition Pdiv2 (z:positive) :=
+ match z with
+ | xH => xH
+ | xO p => p
+ | xI p => p
+ end.
+
+Infix "/" := Pdiv2 : positive_scope.
+
+(** Comparison on binary positive numbers *)
+
+Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison :=
+ match x, y with
+ | xI x', xI y' => Pcompare x' y' r
+ | xI x', xO y' => Pcompare x' y' Gt
+ | xI x', xH => Gt
+ | xO x', xI y' => Pcompare x' y' Lt
+ | xO x', xO y' => Pcompare x' y' r
+ | xO x', xH => Gt
+ | xH, xI y' => Lt
+ | xH, xO y' => Lt
+ | xH, xH => r
+ end.
+
+Infix "?=" := Pcompare (at level 70, no associativity) : positive_scope.
+
+(**********************************************************************)
+(** Miscellaneous properties of binary positive numbers *)
+
+Lemma ZL11 : forall p:positive, p = xH \/ p <> xH.
+Proof.
+intros x; case x; intros; (left; reflexivity) || (right; discriminate).
+Qed.
+
+(**********************************************************************)
+(** Properties of successor on binary positive numbers *)
+
+(** Specification of [xI] in term of [Psucc] and [xO] *)
+
+Lemma xI_succ_xO : forall p:positive, xI p = Psucc (xO p).
+Proof.
+reflexivity.
+Qed.
+
+Lemma Psucc_discr : forall p:positive, p <> Psucc p.
+Proof.
+intro x; destruct x as [p| p| ]; discriminate.
+Qed.
+
+(** Successor and double *)
+
+Lemma Psucc_o_double_minus_one_eq_xO :
+ forall p:positive, Psucc (Pdouble_minus_one p) = xO p.
+Proof.
+intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
+ reflexivity.
+Qed.
+
+Lemma Pdouble_minus_one_o_succ_eq_xI :
+ forall p:positive, Pdouble_minus_one (Psucc p) = xI p.
+Proof.
+intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
+ reflexivity.
+Qed.
+
+Lemma xO_succ_permute :
+ forall p:positive, xO (Psucc p) = Psucc (Psucc (xO p)).
+Proof.
+intro y; induction y as [y Hrecy| y Hrecy| ]; simpl in |- *; auto.
+Qed.
+
+Lemma double_moins_un_xO_discr :
+ forall p:positive, Pdouble_minus_one p <> xO p.
+Proof.
+intro x; destruct x as [p| p| ]; discriminate.
+Qed.
+
+(** Successor and predecessor *)
+
+Lemma Psucc_not_one : forall p:positive, Psucc p <> xH.
+Proof.
+intro x; destruct x as [x| x| ]; discriminate.
+Qed.
+
+Lemma Ppred_succ : forall p:positive, Ppred (Psucc p) = p.
+Proof.
+intro x; destruct x as [p| p| ]; [ idtac | idtac | simpl in |- *; auto ];
+ (induction p as [p IHp| | ]; [ idtac | reflexivity | reflexivity ]);
+ simpl in |- *; simpl in IHp; try rewrite <- IHp; reflexivity.
+Qed.
+
+Lemma Psucc_pred : forall p:positive, p = xH \/ Psucc (Ppred p) = p.
+Proof.
+intro x; induction x as [x Hrecx| x Hrecx| ];
+ [ simpl in |- *; auto
+ | simpl in |- *; intros; right; apply Psucc_o_double_minus_one_eq_xO
+ | auto ].
+Qed.
+
+(** Injectivity of successor *)
+
+Lemma Psucc_inj : forall p q:positive, Psucc p = Psucc q -> p = q.
+Proof.
+intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
+ discriminate H || (try (injection H; clear H; intro H)).
+rewrite (IHx y H); reflexivity.
+absurd (Psucc x = xH); [ apply Psucc_not_one | assumption ].
+apply f_equal with (1 := H); assumption.
+absurd (Psucc y = xH);
+ [ apply Psucc_not_one | symmetry in |- *; assumption ].
+reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Properties of addition on binary positive numbers *)
+
+(** Specification of [Psucc] in term of [Pplus] *)
+
+Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + xH.
+Proof.
+intro q; destruct q as [p| p| ]; reflexivity.
+Qed.
+
+Lemma Pplus_one_succ_l : forall p:positive, Psucc p = xH + p.
+Proof.
+intro q; destruct q as [p| p| ]; reflexivity.
+Qed.
+
+(** Specification of [Pplus_carry] *)
+
+Theorem Pplus_carry_spec :
+ forall p q:positive, Pplus_carry p q = Psucc (p + q).
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y;
+ [ destruct y as [p0| p0| ]
+ | destruct y as [p0| p0| ]
+ | destruct y as [p| p| ] ]; simpl in |- *; auto; rewrite IHp;
+ auto.
+Qed.
+
+(** Commutativity *)
+
+Theorem Pplus_comm : forall p q:positive, p + q = q + p.
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y;
+ [ destruct y as [p0| p0| ]
+ | destruct y as [p0| p0| ]
+ | destruct y as [p| p| ] ]; simpl in |- *; auto;
+ try do 2 rewrite Pplus_carry_spec; rewrite IHp; auto.
+Qed.
+
+(** Permutation of [Pplus] and [Psucc] *)
+
+Theorem Pplus_succ_permute_r :
+ forall p q:positive, p + Psucc q = Psucc (p + q).
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y;
+ [ destruct y as [p0| p0| ]
+ | destruct y as [p0| p0| ]
+ | destruct y as [p| p| ] ]; simpl in |- *; auto;
+ [ rewrite Pplus_carry_spec; rewrite IHp; auto
+ | rewrite Pplus_carry_spec; auto
+ | destruct p; simpl in |- *; auto
+ | rewrite IHp; auto
+ | destruct p; simpl in |- *; auto ].
+Qed.
+
+Theorem Pplus_succ_permute_l :
+ forall p q:positive, Psucc p + q = Psucc (p + q).
+Proof.
+intros x y; rewrite Pplus_comm; rewrite Pplus_comm with (p := x);
+ apply Pplus_succ_permute_r.
+Qed.
+
+Theorem Pplus_carry_pred_eq_plus :
+ forall p q:positive, q <> xH -> Pplus_carry p (Ppred q) = p + q.
+Proof.
+intros q z H; elim (Psucc_pred z);
+ [ intro; absurd (z = xH); auto
+ | intros E; pattern z at 2 in |- *; rewrite <- E;
+ rewrite Pplus_succ_permute_r; rewrite Pplus_carry_spec;
+ trivial ].
+Qed.
+
+(** No neutral for addition on strictly positive numbers *)
+
+Lemma Pplus_no_neutral : forall p q:positive, q + p <> p.
+Proof.
+intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
+ discriminate H || injection H; clear H; intro H; apply (IHx y H).
+Qed.
+
+Lemma Pplus_carry_no_neutral :
+ forall p q:positive, Pplus_carry q p <> Psucc p.
+Proof.
+intros x y H; absurd (y + x = x);
+ [ apply Pplus_no_neutral
+ | apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption ].
+Qed.
+
+(** Simplification *)
+
+Lemma Pplus_carry_plus :
+ forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s.
+Proof.
+intros x y z t H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec;
+ assumption.
+Qed.
+
+Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q.
+Proof.
+intros x y z; generalize x y; clear x y.
+induction z as [z| z| ].
+ destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
+ intro H; discriminate H || (try (injection H; clear H; intro H)).
+ rewrite IHz with (1 := Pplus_carry_plus _ _ _ _ H); reflexivity.
+ absurd (Pplus_carry x z = Psucc z);
+ [ apply Pplus_carry_no_neutral | assumption ].
+ rewrite IHz with (1 := H); reflexivity.
+ symmetry in H; absurd (Pplus_carry y z = Psucc z);
+ [ apply Pplus_carry_no_neutral | assumption ].
+ reflexivity.
+ destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
+ intro H; discriminate H || (try (injection H; clear H; intro H)).
+ rewrite IHz with (1 := H); reflexivity.
+ absurd (x + z = z); [ apply Pplus_no_neutral | assumption ].
+ rewrite IHz with (1 := H); reflexivity.
+ symmetry in H; absurd (y + z = z);
+ [ apply Pplus_no_neutral | assumption ].
+ reflexivity.
+ intros H x y; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
+Qed.
+
+Lemma Pplus_reg_l : forall p q r:positive, p + q = p + r -> q = r.
+Proof.
+intros x y z H; apply Pplus_reg_r with (r := x);
+ rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
+ assumption.
+Qed.
+
+Lemma Pplus_carry_reg_r :
+ forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q.
+Proof.
+intros x y z H; apply Pplus_reg_r with (r := z); apply Pplus_carry_plus;
+ assumption.
+Qed.
+
+Lemma Pplus_carry_reg_l :
+ forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r.
+Proof.
+intros x y z H; apply Pplus_reg_r with (r := x);
+ rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
+ apply Pplus_carry_plus; assumption.
+Qed.
+
+(** Addition on positive is associative *)
+
+Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r.
+Proof.
+intros x y; generalize x; clear x.
+induction y as [y| y| ]; intro x.
+ destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
+ repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
+ repeat rewrite Pplus_succ_permute_l;
+ reflexivity || (repeat apply f_equal with (A := positive));
+ apply IHy.
+ destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
+ repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
+ repeat rewrite Pplus_succ_permute_l;
+ reflexivity || (repeat apply f_equal with (A := positive));
+ apply IHy.
+ intro z; rewrite Pplus_comm with (p := xH);
+ do 2 rewrite <- Pplus_one_succ_r; rewrite Pplus_succ_permute_l;
+ rewrite Pplus_succ_permute_r; reflexivity.
+Qed.
+
+(** Commutation of addition with the double of a positive number *)
+
+Lemma Pplus_xI_double_minus_one :
+ forall p q:positive, xO (p + q) = xI p + Pdouble_minus_one q.
+Proof.
+intros; change (xI p) with (xO p + xH) in |- *.
+rewrite <- Pplus_assoc; rewrite <- Pplus_one_succ_l;
+ rewrite Psucc_o_double_minus_one_eq_xO.
+reflexivity.
+Qed.
+
+Lemma Pplus_xO_double_minus_one :
+ forall p q:positive, Pdouble_minus_one (p + q) = xO p + Pdouble_minus_one q.
+Proof.
+induction p as [p IHp| p IHp| ]; destruct q as [q| q| ]; simpl in |- *;
+ try rewrite Pplus_carry_spec; try rewrite Pdouble_minus_one_o_succ_eq_xI;
+ try rewrite IHp; try rewrite Pplus_xI_double_minus_one;
+ try reflexivity.
+ rewrite <- Psucc_o_double_minus_one_eq_xO; rewrite Pplus_one_succ_l;
+ reflexivity.
+Qed.
+
+(** Misc *)
+
+Lemma Pplus_diag : forall p:positive, p + p = xO p.
+Proof.
+intro x; induction x; simpl in |- *; try rewrite Pplus_carry_spec;
+ try rewrite IHx; reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Peano induction on binary positive positive numbers *)
+
+Fixpoint plus_iter (x y:positive) {struct x} : positive :=
+ match x with
+ | xH => Psucc y
+ | xO x => plus_iter x (plus_iter x y)
+ | xI x => plus_iter x (plus_iter x (Psucc y))
+ end.
+
+Lemma plus_iter_eq_plus : forall p q:positive, plus_iter p q = p + q.
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y;
+ [ destruct y as [p0| p0| ]
+ | destruct y as [p0| p0| ]
+ | destruct y as [p| p| ] ]; simpl in |- *; reflexivity || (do 2 rewrite IHp);
+ rewrite Pplus_assoc; rewrite Pplus_diag; try reflexivity.
+rewrite Pplus_carry_spec; rewrite <- Pplus_succ_permute_r; reflexivity.
+rewrite Pplus_one_succ_r; reflexivity.
+Qed.
+
+Lemma plus_iter_xO : forall p:positive, plus_iter p p = xO p.
+Proof.
+intro; rewrite <- Pplus_diag; apply plus_iter_eq_plus.
+Qed.
+
+Lemma plus_iter_xI : forall p:positive, Psucc (plus_iter p p) = xI p.
+Proof.
+intro; rewrite xI_succ_xO; rewrite <- Pplus_diag;
+ apply (f_equal (A:=positive)); apply plus_iter_eq_plus.
+Qed.
+
+Lemma iterate_add :
+ forall P:positive -> Type,
+ (forall n:positive, P n -> P (Psucc n)) ->
+ forall p q:positive, P q -> P (plus_iter p q).
+Proof.
+intros P H; induction p; simpl in |- *; intros.
+apply IHp; apply IHp; apply H; assumption.
+apply IHp; apply IHp; assumption.
+apply H; assumption.
+Defined.
+
+(** Peano induction *)
+
+Theorem Pind :
+ forall P:positive -> Prop,
+ P xH -> (forall n:positive, P n -> P (Psucc n)) -> forall p:positive, P p.
+Proof.
+intros P H1 Hsucc n; induction n.
+rewrite <- plus_iter_xI; apply Hsucc; apply iterate_add; assumption.
+rewrite <- plus_iter_xO; apply iterate_add; assumption.
+assumption.
+Qed.
+
+(** Peano recursion *)
+
+Definition Prec (A:Set) (a:A) (f:positive -> A -> A) :
+ positive -> A :=
+ (fix Prec (p:positive) : A :=
+ match p with
+ | xH => a
+ | xO p => iterate_add (fun _ => A) f p p (Prec p)
+ | xI p => f (plus_iter p p) (iterate_add (fun _ => A) f p p (Prec p))
+ end).
+
+(** Peano case analysis *)
+
+Theorem Pcase :
+ forall P:positive -> Prop,
+ P xH -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p.
+Proof.
+intros; apply Pind; auto.
+Qed.
+
+(*
+Check
+ (let fact := Prec positive xH (fun p r => Psucc p * r) in
+ let seven := xI (xI xH) in
+ let five_thousand_forty :=
+ xO (xO (xO (xO (xI (xI (xO (xI (xI (xI (xO (xO xH))))))))))) in
+ refl_equal _:fact seven = five_thousand_forty).
+*)
+
+(**********************************************************************)
+(** Properties of multiplication on binary positive numbers *)
+
+(** One is right neutral for multiplication *)
+
+Lemma Pmult_1_r : forall p:positive, p * xH = p.
+Proof.
+intro x; induction x; simpl in |- *.
+ rewrite IHx; reflexivity.
+ rewrite IHx; reflexivity.
+ reflexivity.
+Qed.
+
+(** Right reduction properties for multiplication *)
+
+Lemma Pmult_xO_permute_r : forall p q:positive, p * xO q = xO (p * q).
+Proof.
+intros x y; induction x; simpl in |- *.
+ rewrite IHx; reflexivity.
+ rewrite IHx; reflexivity.
+ reflexivity.
+Qed.
+
+Lemma Pmult_xI_permute_r : forall p q:positive, p * xI q = p + xO (p * q).
+Proof.
+intros x y; induction x; simpl in |- *.
+ rewrite IHx; do 2 rewrite Pplus_assoc; rewrite Pplus_comm with (p := y);
+ reflexivity.
+ rewrite IHx; reflexivity.
+ reflexivity.
+Qed.
+
+(** Commutativity of multiplication *)
+
+Theorem Pmult_comm : forall p q:positive, p * q = q * p.
+Proof.
+intros x y; induction y; simpl in |- *.
+ rewrite <- IHy; apply Pmult_xI_permute_r.
+ rewrite <- IHy; apply Pmult_xO_permute_r.
+ apply Pmult_1_r.
+Qed.
+
+(** Distributivity of multiplication over addition *)
+
+Theorem Pmult_plus_distr_l :
+ forall p q r:positive, p * (q + r) = p * q + p * r.
+Proof.
+intros x y z; induction x; simpl in |- *.
+ rewrite IHx; rewrite <- Pplus_assoc with (q := xO (x * y));
+ rewrite Pplus_assoc with (p := xO (x * y));
+ rewrite Pplus_comm with (p := xO (x * y));
+ rewrite <- Pplus_assoc with (q := xO (x * y));
+ rewrite Pplus_assoc with (q := z); reflexivity.
+ rewrite IHx; reflexivity.
+ reflexivity.
+Qed.
+
+Theorem Pmult_plus_distr_r :
+ forall p q r:positive, (p + q) * r = p * r + q * r.
+Proof.
+intros x y z; do 3 rewrite Pmult_comm with (q := z); apply Pmult_plus_distr_l.
+Qed.
+
+(** Associativity of multiplication *)
+
+Theorem Pmult_assoc : forall p q r:positive, p * (q * r) = p * q * r.
+Proof.
+intro x; induction x as [x| x| ]; simpl in |- *; intros y z.
+ rewrite IHx; rewrite Pmult_plus_distr_r; reflexivity.
+ rewrite IHx; reflexivity.
+ reflexivity.
+Qed.
+
+(** Parity properties of multiplication *)
+
+Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, xI p * r <> xO q * r.
+Proof.
+intros x y z; induction z as [| z IHz| ]; try discriminate.
+intro H; apply IHz; clear IHz.
+do 2 rewrite Pmult_xO_permute_r in H.
+injection H; clear H; intro H; exact H.
+Qed.
+
+Lemma Pmult_xO_discr : forall p q:positive, xO p * q <> q.
+Proof.
+intros x y; induction y; try discriminate.
+rewrite Pmult_xO_permute_r; injection; assumption.
+Qed.
+
+(** Simplification properties of multiplication *)
+
+Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q.
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
+ intros z H; reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
+ simpl in H; apply IHp with (xO z); simpl in |- *;
+ do 2 rewrite Pmult_xO_permute_r; apply Pplus_reg_l with (1 := H).
+ apply Pmult_xI_mult_xO_discr with (1 := H).
+ simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1 := H).
+ symmetry in H; apply Pmult_xI_mult_xO_discr with (1 := H).
+ apply IHp with (xO z); simpl in |- *; do 2 rewrite Pmult_xO_permute_r;
+ assumption.
+ apply Pmult_xO_discr with (1 := H).
+ simpl in H; symmetry in H; rewrite Pplus_comm in H;
+ apply Pplus_no_neutral with (1 := H).
+ symmetry in H; apply Pmult_xO_discr with (1 := H).
+Qed.
+
+Theorem Pmult_reg_l : forall p q r:positive, r * p = r * q -> p = q.
+Proof.
+intros x y z H; apply Pmult_reg_r with (r := z).
+rewrite Pmult_comm with (p := x); rewrite Pmult_comm with (p := y);
+ assumption.
+Qed.
+
+(** Inversion of multiplication *)
+
+Lemma Pmult_1_inversion_l : forall p q:positive, p * q = xH -> p = xH.
+Proof.
+intros x y; destruct x as [p| p| ]; simpl in |- *.
+ destruct y as [p0| p0| ]; intro; discriminate.
+ intro; discriminate.
+ reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Properties of comparison on binary positive numbers *)
+
+Theorem Pcompare_not_Eq :
+ forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq.
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
+ split; simpl in |- *; auto; discriminate || (elim (IHp q); auto).
+Qed.
+
+Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q.
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
+ simpl in |- *; auto; intro H;
+ [ rewrite (IHp q); trivial
+ | absurd ((p ?= q) Gt = Eq);
+ [ elim (Pcompare_not_Eq p q); auto | assumption ]
+ | discriminate H
+ | absurd ((p ?= q) Lt = Eq);
+ [ elim (Pcompare_not_Eq p q); auto | assumption ]
+ | rewrite (IHp q); auto
+ | discriminate H
+ | discriminate H
+ | discriminate H ].
+Qed.
+
+Lemma Pcompare_Gt_Lt :
+ forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt.
+Proof.
+intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
+ [ induction y as [y Hrecy| y Hrecy| ]
+ | induction y as [y Hrecy| y Hrecy| ]
+ | induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
+ auto; discriminate || intros H; discriminate H.
+Qed.
+
+Lemma Pcompare_Lt_Gt :
+ forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt.
+Proof.
+intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
+ [ induction y as [y Hrecy| y Hrecy| ]
+ | induction y as [y Hrecy| y Hrecy| ]
+ | induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
+ auto; discriminate || intros H; discriminate H.
+Qed.
+
+Lemma Pcompare_Lt_Lt :
+ forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q.
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
+ simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
+ auto; intros E; rewrite E; auto.
+Qed.
+
+Lemma Pcompare_Gt_Gt :
+ forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q.
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
+ simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
+ auto; intros E; rewrite E; auto.
+Qed.
+
+Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.
+Proof.
+simple induction r; auto.
+Qed.
+
+Ltac ElimPcompare c1 c2 :=
+ elim (Dcompare ((c1 ?= c2) Eq));
+ [ idtac | let x := fresh "H" in
+ (intro x; case x; clear x) ].
+
+Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq.
+intro x; induction x as [x Hrecx| x Hrecx| ]; auto.
+Qed.
+
+Lemma Pcompare_antisym :
+ forall (p q:positive) (r:comparison),
+ CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
+Proof.
+intro x; induction x as [p IHp| p IHp| ]; intro y;
+ [ destruct y as [p0| p0| ]
+ | destruct y as [p0| p0| ]
+ | destruct y as [p| p| ] ]; intro r;
+ reflexivity ||
+ (symmetry in |- *; assumption) || discriminate H || simpl in |- *;
+ apply IHp || (try rewrite IHp); try reflexivity.
+Qed.
+
+Lemma ZC1 : forall p q:positive, (p ?= q) Eq = Gt -> (q ?= p) Eq = Lt.
+Proof.
+intros; change Eq with (CompOpp Eq) in |- *.
+rewrite <- Pcompare_antisym; rewrite H; reflexivity.
+Qed.
+
+Lemma ZC2 : forall p q:positive, (p ?= q) Eq = Lt -> (q ?= p) Eq = Gt.
+Proof.
+intros; change Eq with (CompOpp Eq) in |- *.
+rewrite <- Pcompare_antisym; rewrite H; reflexivity.
+Qed.
+
+Lemma ZC3 : forall p q:positive, (p ?= q) Eq = Eq -> (q ?= p) Eq = Eq.
+Proof.
+intros; change Eq with (CompOpp Eq) in |- *.
+rewrite <- Pcompare_antisym; rewrite H; reflexivity.
+Qed.
+
+Lemma ZC4 : forall p q:positive, (p ?= q) Eq = CompOpp ((q ?= p) Eq).
+Proof.
+intros; change Eq at 1 with (CompOpp Eq) in |- *.
+symmetry in |- *; apply Pcompare_antisym.
+Qed.
+
+(**********************************************************************)
+(** Properties of subtraction on binary positive numbers *)
+
+Lemma double_eq_zero_inversion :
+ forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul.
+Proof.
+destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
+Qed.
+
+Lemma double_plus_one_zero_discr :
+ forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul.
+Proof.
+simple induction p; intros; discriminate.
+Qed.
+
+Lemma double_plus_one_eq_one_inversion :
+ forall p:positive_mask, Pdouble_plus_one_mask p = IsPos xH -> p = IsNul.
+Proof.
+destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
+Qed.
+
+Lemma double_eq_one_discr :
+ forall p:positive_mask, Pdouble_mask p <> IsPos xH.
+Proof.
+simple induction p; intros; discriminate.
+Qed.
+
+Theorem Pminus_mask_diag : forall p:positive, Pminus_mask p p = IsNul.
+Proof.
+intro x; induction x as [p IHp| p IHp| ];
+ [ simpl in |- *; rewrite IHp; simpl in |- *; trivial
+ | simpl in |- *; rewrite IHp; auto
+ | auto ].
+Qed.
+
+Lemma ZL10 :
+ forall p q:positive,
+ Pminus_mask p q = IsPos xH -> Pminus_mask_carry p q = IsNul.
+Proof.
+intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
+ simpl in |- *; intro H; try discriminate H;
+ [ absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
+ [ apply double_eq_one_discr | assumption ]
+ | assert (Heq : Pminus_mask p q = IsNul);
+ [ apply double_plus_one_eq_one_inversion; assumption
+ | rewrite Heq; reflexivity ]
+ | assert (Heq : Pminus_mask_carry p q = IsNul);
+ [ apply double_plus_one_eq_one_inversion; assumption
+ | rewrite Heq; reflexivity ]
+ | absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
+ [ apply double_eq_one_discr | assumption ]
+ | destruct p; simpl in |- *;
+ [ discriminate H | discriminate H | reflexivity ] ].
+Qed.
+
+(** Properties of subtraction valid only for x>y *)
+
+Lemma Pminus_mask_Gt :
+ forall p q:positive,
+ (p ?= q) Eq = Gt ->
+ exists h : positive,
+ Pminus_mask p q = IsPos h /\
+ q + h = p /\ (h = xH \/ Pminus_mask_carry p q = IsPos (Ppred h)).
+Proof.
+intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
+ simpl in |- *; intro H; try discriminate H.
+ destruct (IHp q H) as [z [H4 [H6 H7]]]; exists (xO z); split.
+ rewrite H4; reflexivity.
+ split.
+ simpl in |- *; rewrite H6; reflexivity.
+ right; clear H6; destruct (ZL11 z) as [H8| H8];
+ [ rewrite H8; rewrite H8 in H4; rewrite ZL10;
+ [ reflexivity | assumption ]
+ | clear H4; destruct H7 as [H9| H9];
+ [ absurd (z = xH); assumption
+ | rewrite H9; clear H9; destruct z as [p0| p0| ];
+ [ reflexivity | reflexivity | absurd (xH = xH); trivial ] ] ].
+ case Pcompare_Gt_Gt with (1 := H);
+ [ intros H3; elim (IHp q H3); intros z H4; exists (xI z); elim H4;
+ intros H5 H6; elim H6; intros H7 H8; split;
+ [ simpl in |- *; rewrite H5; auto
+ | split;
+ [ simpl in |- *; rewrite H7; trivial
+ | right;
+ change (Pdouble_mask (Pminus_mask p q) = IsPos (Ppred (xI z)))
+ in |- *; rewrite H5; auto ] ]
+ | intros H3; exists xH; rewrite H3; split;
+ [ simpl in |- *; rewrite Pminus_mask_diag; auto | split; auto ] ].
+ exists (xO p); auto.
+ destruct (IHp q) as [z [H4 [H6 H7]]].
+ apply Pcompare_Lt_Gt; assumption.
+ destruct (ZL11 z) as [vZ| ];
+ [ exists xH; split;
+ [ rewrite ZL10; [ reflexivity | rewrite vZ in H4; assumption ]
+ | split;
+ [ simpl in |- *; rewrite Pplus_one_succ_r; rewrite <- vZ;
+ rewrite H6; trivial
+ | auto ] ]
+ | exists (xI (Ppred z)); destruct H7 as [| H8];
+ [ absurd (z = xH); assumption
+ | split;
+ [ rewrite H8; trivial
+ | split;
+ [ simpl in |- *; rewrite Pplus_carry_pred_eq_plus;
+ [ rewrite H6; trivial | assumption ]
+ | right; rewrite H8; reflexivity ] ] ] ].
+ destruct (IHp q H) as [z [H4 [H6 H7]]].
+ exists (xO z); split;
+ [ rewrite H4; auto
+ | split;
+ [ simpl in |- *; rewrite H6; reflexivity
+ | right;
+ change
+ (Pdouble_plus_one_mask (Pminus_mask_carry p q) =
+ IsPos (Pdouble_minus_one z)) in |- *;
+ destruct (ZL11 z) as [H8| H8];
+ [ rewrite H8; simpl in |- *;
+ assert (H9 : Pminus_mask_carry p q = IsNul);
+ [ apply ZL10; rewrite <- H8; assumption
+ | rewrite H9; reflexivity ]
+ | destruct H7 as [H9| H9];
+ [ absurd (z = xH); auto
+ | rewrite H9; destruct z as [p0| p0| ]; simpl in |- *;
+ [ reflexivity
+ | reflexivity
+ | absurd (xH = xH); [ assumption | reflexivity ] ] ] ] ] ].
+ exists (Pdouble_minus_one p); split;
+ [ reflexivity
+ | clear IHp; split;
+ [ destruct p; simpl in |- *;
+ [ reflexivity
+ | rewrite Psucc_o_double_minus_one_eq_xO; reflexivity
+ | reflexivity ]
+ | destruct p; [ right | right | left ]; reflexivity ] ].
+Qed.
+
+Theorem Pplus_minus :
+ forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p.
+Proof.
+intros x y H; elim Pminus_mask_Gt with (1 := H); intros z H1; elim H1;
+ intros H2 H3; elim H3; intros H4 H5; unfold Pminus in |- *;
+ rewrite H2; exact H4.
+Qed.