summaryrefslogtreecommitdiff
path: root/theories/MSets/MSetPositive.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/MSets/MSetPositive.v')
-rw-r--r--theories/MSets/MSetPositive.v81
1 files changed, 4 insertions, 77 deletions
diff --git a/theories/MSets/MSetPositive.v b/theories/MSets/MSetPositive.v
index 25a8c162..8dd240f4 100644
--- a/theories/MSets/MSetPositive.v
+++ b/theories/MSets/MSetPositive.v
@@ -16,79 +16,13 @@
Sandrine Blazy (used for building certified compilers).
*)
-Require Import Bool BinPos Orders MSetInterface.
+Require Import Bool BinPos Orders OrdersEx MSetInterface.
Set Implicit Arguments.
Local Open Scope lazy_bool_scope.
Local Open Scope positive_scope.
Local Unset Elimination Schemes.
-(** Even if [positive] can be seen as an ordered type with respect to the
- usual order (see above), we can also use a lexicographic order over bits
- (lower bits are considered first). This is more natural when using
- [positive] as indexes for sets or maps (see FSetPositive and FMapPositive. *)
-
-Module PositiveOrderedTypeBits <: UsualOrderedType.
- Definition t:=positive.
- Include HasUsualEq <+ UsualIsEq.
- Definition eqb := Pos.eqb.
- Definition eqb_eq := Pos.eqb_eq.
- Include HasEqBool2Dec.
-
- Fixpoint bits_lt (p q:positive) : Prop :=
- match p, q with
- | xH, xI _ => True
- | xH, _ => False
- | xO p, xO q => bits_lt p q
- | xO _, _ => True
- | xI p, xI q => bits_lt p q
- | xI _, _ => False
- end.
-
- Definition lt:=bits_lt.
-
- Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x.
- Proof.
- induction x; simpl; auto.
- Qed.
-
- Lemma bits_lt_trans :
- forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
- Proof.
- induction x; destruct y,z; simpl; eauto; intuition.
- Qed.
-
- Instance lt_compat : Proper (eq==>eq==>iff) lt.
- Proof.
- intros x x' Hx y y' Hy. rewrite Hx, Hy; intuition.
- Qed.
-
- Instance lt_strorder : StrictOrder lt.
- Proof.
- split; [ exact bits_lt_antirefl | exact bits_lt_trans ].
- Qed.
-
- Fixpoint compare x y :=
- match x, y with
- | x~1, y~1 => compare x y
- | x~1, _ => Gt
- | x~0, y~0 => compare x y
- | x~0, _ => Lt
- | 1, y~1 => Lt
- | 1, 1 => Eq
- | 1, y~0 => Gt
- end.
-
- Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
- Proof.
- unfold eq, lt.
- induction x; destruct y; try constructor; simpl; auto.
- destruct (IHx y); subst; auto.
- destruct (IHx y); subst; auto.
- Qed.
-
-End PositiveOrderedTypeBits.
-
Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Module E:=PositiveOrderedTypeBits.
@@ -303,12 +237,6 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
| Node l true r => S (cardinal l + cardinal r)
end.
- Definition omap (f: elt -> elt) x :=
- match x with
- | None => None
- | Some i => Some (f i)
- end.
-
(** would it be more efficient to use a path like in the above functions ? *)
Fixpoint choose (m: t) : option elt :=
@@ -316,7 +244,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
| Leaf => None
| Node l o r => if o then Some 1 else
match choose l with
- | None => omap xI (choose r)
+ | None => option_map xI (choose r)
| Some i => Some i~0
end
end.
@@ -326,7 +254,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
| Leaf => None
| Node l o r =>
match min_elt l with
- | None => if o then Some 1 else omap xI (min_elt r)
+ | None => if o then Some 1 else option_map xI (min_elt r)
| Some i => Some i~0
end
end.
@@ -336,7 +264,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
| Leaf => None
| Node l o r =>
match max_elt r with
- | None => if o then Some 1 else omap xO (max_elt l)
+ | None => if o then Some 1 else option_map xO (max_elt l)
| Some i => Some i~1
end
end.
@@ -967,7 +895,6 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Lemma elements_spec2w: forall s, NoDupA E.eq (elements s).
Proof.
intro. apply SortA_NoDupA with E.lt; auto with *.
- apply E.eq_equiv.
apply elements_spec2.
Qed.