diff options
Diffstat (limited to 'theories/MMaps/MMapFacts.v')
-rw-r--r-- | theories/MMaps/MMapFacts.v | 2434 |
1 files changed, 0 insertions, 2434 deletions
diff --git a/theories/MMaps/MMapFacts.v b/theories/MMaps/MMapFacts.v deleted file mode 100644 index 69066a7b..00000000 --- a/theories/MMaps/MMapFacts.v +++ /dev/null @@ -1,2434 +0,0 @@ -(***********************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) -(* \VV/ *************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(***********************************************************************) - -(** * Finite maps library *) - -(** This functor derives additional facts from [MMapInterface.S]. These - facts are mainly the specifications of [MMapInterface.S] written using - different styles: equivalence and boolean equalities. -*) - -Require Import Bool Equalities Orders OrdersFacts OrdersLists. -Require Import Morphisms Permutation SetoidPermutation. -Require Export MMapInterface. -Set Implicit Arguments. -Unset Strict Implicit. - -Lemma eq_bool_alt b b' : b=b' <-> (b=true <-> b'=true). -Proof. - destruct b, b'; intuition. -Qed. - -Lemma eq_option_alt {elt}(o o':option elt) : - o=o' <-> (forall e, o=Some e <-> o'=Some e). -Proof. -split; intros. -- now subst. -- destruct o, o'; rewrite ?H; auto. - symmetry; now apply H. -Qed. - -Lemma option_map_some {A B}(f:A->B) o : - option_map f o <> None <-> o <> None. -Proof. - destruct o; simpl. now split. split; now destruct 1. -Qed. - -(** * Properties about weak maps *) - -Module WProperties_fun (E:DecidableType)(Import M:WSfun E). - -Definition Empty {elt}(m : t elt) := forall x e, ~MapsTo x e m. - -(** A few things about E.eq *) - -Lemma eq_refl x : E.eq x x. Proof. apply E.eq_equiv. Qed. -Lemma eq_sym x y : E.eq x y -> E.eq y x. Proof. apply E.eq_equiv. Qed. -Lemma eq_trans x y z : E.eq x y -> E.eq y z -> E.eq x z. -Proof. apply E.eq_equiv. Qed. -Hint Immediate eq_refl eq_sym : map. -Hint Resolve eq_trans eq_equivalence E.eq_equiv : map. - -Definition eqb x y := if E.eq_dec x y then true else false. - -Lemma eqb_eq x y : eqb x y = true <-> E.eq x y. -Proof. - unfold eqb; case E.eq_dec; now intuition. -Qed. - -Lemma eqb_sym x y : eqb x y = eqb y x. -Proof. - apply eq_bool_alt. rewrite !eqb_eq. split; apply E.eq_equiv. -Qed. - -(** Initial results about MapsTo and In *) - -Lemma mapsto_fun {elt} m x (e e':elt) : - MapsTo x e m -> MapsTo x e' m -> e=e'. -Proof. -rewrite <- !find_spec. congruence. -Qed. - -Lemma in_find {elt} (m : t elt) x : In x m <-> find x m <> None. -Proof. - unfold In. split. - - intros (e,H). rewrite <-find_spec in H. congruence. - - destruct (find x m) as [e|] eqn:H. - + exists e. now apply find_spec. - + now destruct 1. -Qed. - -Lemma not_in_find {elt} (m : t elt) x : ~In x m <-> find x m = None. -Proof. - rewrite in_find. split; auto. - intros; destruct (find x m); trivial. now destruct H. -Qed. - -Notation in_find_iff := in_find (only parsing). -Notation not_find_in_iff := not_in_find (only parsing). - -(** * [Equal] is a setoid equality. *) - -Infix "==" := Equal (at level 30). - -Lemma Equal_refl {elt} (m : t elt) : m == m. -Proof. red; reflexivity. Qed. - -Lemma Equal_sym {elt} (m m' : t elt) : m == m' -> m' == m. -Proof. unfold Equal; auto. Qed. - -Lemma Equal_trans {elt} (m m' m'' : t elt) : - m == m' -> m' == m'' -> m == m''. -Proof. unfold Equal; congruence. Qed. - -Instance Equal_equiv {elt} : Equivalence (@Equal elt). -Proof. -constructor; [exact Equal_refl | exact Equal_sym | exact Equal_trans]. -Qed. - -Arguments Equal {elt} m m'. - -Instance MapsTo_m {elt} : - Proper (E.eq==>Logic.eq==>Equal==>iff) (@MapsTo elt). -Proof. -intros k k' Hk e e' <- m m' Hm. rewrite <- Hk. -now rewrite <- !find_spec, Hm. -Qed. - -Instance In_m {elt} : - Proper (E.eq==>Equal==>iff) (@In elt). -Proof. -intros k k' Hk m m' Hm. unfold In. -split; intros (e,H); exists e; revert H; - now rewrite Hk, <- !find_spec, Hm. -Qed. - -Instance find_m {elt} : Proper (E.eq==>Equal==>Logic.eq) (@find elt). -Proof. -intros k k' Hk m m' <-. -rewrite eq_option_alt. intros. now rewrite !find_spec, Hk. -Qed. - -Instance mem_m {elt} : Proper (E.eq==>Equal==>Logic.eq) (@mem elt). -Proof. -intros k k' Hk m m' Hm. now rewrite eq_bool_alt, !mem_spec, Hk, Hm. -Qed. - -Instance Empty_m {elt} : Proper (Equal==>iff) (@Empty elt). -Proof. -intros m m' Hm. unfold Empty. now setoid_rewrite Hm. -Qed. - -Instance is_empty_m {elt} : Proper (Equal ==> Logic.eq) (@is_empty elt). -Proof. -intros m m' Hm. rewrite eq_bool_alt, !is_empty_spec. - now setoid_rewrite Hm. -Qed. - -Instance add_m {elt} : Proper (E.eq==>Logic.eq==>Equal==>Equal) (@add elt). -Proof. -intros k k' Hk e e' <- m m' Hm y. -destruct (E.eq_dec k y) as [H|H]. -- rewrite <-H, add_spec1. now rewrite Hk, add_spec1. -- rewrite !add_spec2; trivial. now rewrite <- Hk. -Qed. - -Instance remove_m {elt} : Proper (E.eq==>Equal==>Equal) (@remove elt). -Proof. -intros k k' Hk m m' Hm y. -destruct (E.eq_dec k y) as [H|H]. -- rewrite <-H, remove_spec1. now rewrite Hk, remove_spec1. -- rewrite !remove_spec2; trivial. now rewrite <- Hk. -Qed. - -Instance map_m {elt elt'} : - Proper ((Logic.eq==>Logic.eq)==>Equal==>Equal) (@map elt elt'). -Proof. -intros f f' Hf m m' Hm y. rewrite !map_spec, Hm. -destruct (find y m'); simpl; trivial. f_equal. now apply Hf. -Qed. - -Instance mapi_m {elt elt'} : - Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Equal) (@mapi elt elt'). -Proof. -intros f f' Hf m m' Hm y. -destruct (mapi_spec f m y) as (x,(Hx,->)). -destruct (mapi_spec f' m' y) as (x',(Hx',->)). -rewrite <- Hm. destruct (find y m); trivial. simpl. -f_equal. apply Hf; trivial. now rewrite Hx, Hx'. -Qed. - -Instance merge_m {elt elt' elt''} : - Proper ((E.eq==>Logic.eq==>Logic.eq==>Logic.eq)==>Equal==>Equal==>Equal) - (@merge elt elt' elt''). -Proof. -intros f f' Hf m1 m1' Hm1 m2 m2' Hm2 y. -destruct (find y m1) as [e1|] eqn:H1. -- apply find_spec in H1. - assert (H : In y m1 \/ In y m2) by (left; now exists e1). - destruct (merge_spec1 f H) as (y1,(Hy1,->)). - rewrite Hm1,Hm2 in H. - destruct (merge_spec1 f' H) as (y2,(Hy2,->)). - rewrite <- Hm1, <- Hm2. apply Hf; trivial. now transitivity y. -- destruct (find y m2) as [e2|] eqn:H2. - + apply find_spec in H2. - assert (H : In y m1 \/ In y m2) by (right; now exists e2). - destruct (merge_spec1 f H) as (y1,(Hy1,->)). - rewrite Hm1,Hm2 in H. - destruct (merge_spec1 f' H) as (y2,(Hy2,->)). - rewrite <- Hm1, <- Hm2. apply Hf; trivial. now transitivity y. - + apply not_in_find in H1. apply not_in_find in H2. - assert (H : ~In y (merge f m1 m2)). - { intro H. apply merge_spec2 in H. intuition. } - apply not_in_find in H. rewrite H. - symmetry. apply not_in_find. intro H'. - apply merge_spec2 in H'. rewrite <- Hm1, <- Hm2 in H'. - intuition. -Qed. - -(* Later: compatibility for cardinal, fold, ... *) - -(** ** Earlier specifications (cf. FMaps) *) - -Section OldSpecs. -Variable elt: Type. -Implicit Type m: t elt. -Implicit Type x y z: key. -Implicit Type e: elt. - -Lemma MapsTo_1 m x y e : E.eq x y -> MapsTo x e m -> MapsTo y e m. -Proof. - now intros ->. -Qed. - -Lemma find_1 m x e : MapsTo x e m -> find x m = Some e. -Proof. apply find_spec. Qed. - -Lemma find_2 m x e : find x m = Some e -> MapsTo x e m. -Proof. apply find_spec. Qed. - -Lemma mem_1 m x : In x m -> mem x m = true. -Proof. apply mem_spec. Qed. - -Lemma mem_2 m x : mem x m = true -> In x m. -Proof. apply mem_spec. Qed. - -Lemma empty_1 : Empty (@empty elt). -Proof. - intros x e. now rewrite <- find_spec, empty_spec. -Qed. - -Lemma is_empty_1 m : Empty m -> is_empty m = true. -Proof. - unfold Empty; rewrite is_empty_spec. setoid_rewrite <- find_spec. - intros H x. specialize (H x). - destruct (find x m) as [e|]; trivial. - now destruct (H e). -Qed. - -Lemma is_empty_2 m : is_empty m = true -> Empty m. -Proof. - rewrite is_empty_spec. intros H x e. now rewrite <- find_spec, H. -Qed. - -Lemma add_1 m x y e : E.eq x y -> MapsTo y e (add x e m). -Proof. - intros <-. rewrite <-find_spec. apply add_spec1. -Qed. - -Lemma add_2 m x y e e' : - ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m). -Proof. - intro. now rewrite <- !find_spec, add_spec2. -Qed. - -Lemma add_3 m x y e e' : - ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m. -Proof. - intro. rewrite <- !find_spec, add_spec2; trivial. -Qed. - -Lemma remove_1 m x y : E.eq x y -> ~ In y (remove x m). -Proof. - intros <-. apply not_in_find. apply remove_spec1. -Qed. - -Lemma remove_2 m x y e : - ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m). -Proof. - intro. now rewrite <- !find_spec, remove_spec2. -Qed. - -Lemma remove_3bis m x y e : - find y (remove x m) = Some e -> find y m = Some e. -Proof. - destruct (E.eq_dec x y) as [<-|H]. - - now rewrite remove_spec1. - - now rewrite remove_spec2. -Qed. - -Lemma remove_3 m x y e : MapsTo y e (remove x m) -> MapsTo y e m. -Proof. - rewrite <-!find_spec. apply remove_3bis. -Qed. - -Lemma bindings_1 m x e : - MapsTo x e m -> InA eq_key_elt (x,e) (bindings m). -Proof. apply bindings_spec1. Qed. - -Lemma bindings_2 m x e : - InA eq_key_elt (x,e) (bindings m) -> MapsTo x e m. -Proof. apply bindings_spec1. Qed. - -Lemma bindings_3w m : NoDupA eq_key (bindings m). -Proof. apply bindings_spec2w. Qed. - -Lemma cardinal_1 m : cardinal m = length (bindings m). -Proof. apply cardinal_spec. Qed. - -Lemma fold_1 m (A : Type) (i : A) (f : key -> elt -> A -> A) : - fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (bindings m) i. -Proof. apply fold_spec. Qed. - -Lemma equal_1 m m' cmp : Equivb cmp m m' -> equal cmp m m' = true. -Proof. apply equal_spec. Qed. - -Lemma equal_2 m m' cmp : equal cmp m m' = true -> Equivb cmp m m'. -Proof. apply equal_spec. Qed. - -End OldSpecs. - -Lemma map_1 {elt elt'}(m: t elt)(x:key)(e:elt)(f:elt->elt') : - MapsTo x e m -> MapsTo x (f e) (map f m). -Proof. - rewrite <- !find_spec, map_spec. now intros ->. -Qed. - -Lemma map_2 {elt elt'}(m: t elt)(x:key)(f:elt->elt') : - In x (map f m) -> In x m. -Proof. - rewrite !in_find, map_spec. apply option_map_some. -Qed. - -Lemma mapi_1 {elt elt'}(m: t elt)(x:key)(e:elt)(f:key->elt->elt') : - MapsTo x e m -> - exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m). -Proof. - destruct (mapi_spec f m x) as (y,(Hy,Eq)). - intro H. exists y; split; trivial. - rewrite <-find_spec in *. now rewrite Eq, H. -Qed. - -Lemma mapi_2 {elt elt'}(m: t elt)(x:key)(f:key->elt->elt') : - In x (mapi f m) -> In x m. -Proof. - destruct (mapi_spec f m x) as (y,(Hy,Eq)). - rewrite !in_find. intro H; contradict H. now rewrite Eq, H. -Qed. - -(** The ancestor [map2] of the current [merge] was dealing with functions - on datas only, not on keys. *) - -Definition map2 {elt elt' elt''} (f:option elt->option elt'->option elt'') - := merge (fun _ => f). - -Lemma map2_1 {elt elt' elt''}(m: t elt)(m': t elt') - (x:key)(f:option elt->option elt'->option elt'') : - In x m \/ In x m' -> - find x (map2 f m m') = f (find x m) (find x m'). -Proof. - intros. unfold map2. - now destruct (merge_spec1 (fun _ => f) H) as (y,(_,->)). -Qed. - -Lemma map2_2 {elt elt' elt''}(m: t elt)(m': t elt') - (x:key)(f:option elt->option elt'->option elt'') : - In x (map2 f m m') -> In x m \/ In x m'. -Proof. apply merge_spec2. Qed. - -Hint Immediate MapsTo_1 mem_2 is_empty_2 - map_2 mapi_2 add_3 remove_3 find_2 : map. -Hint Resolve mem_1 is_empty_1 is_empty_2 add_1 add_2 remove_1 - remove_2 find_1 fold_1 map_1 mapi_1 mapi_2 : map. - -(** ** Specifications written using equivalences *) - -Section IffSpec. -Variable elt: Type. -Implicit Type m: t elt. -Implicit Type x y z: key. -Implicit Type e: elt. - -Lemma in_iff m x y : E.eq x y -> (In x m <-> In y m). -Proof. now intros ->. Qed. - -Lemma mapsto_iff m x y e : E.eq x y -> (MapsTo x e m <-> MapsTo y e m). -Proof. now intros ->. Qed. - -Lemma mem_in_iff m x : In x m <-> mem x m = true. -Proof. symmetry. apply mem_spec. Qed. - -Lemma not_mem_in_iff m x : ~In x m <-> mem x m = false. -Proof. -rewrite mem_in_iff; destruct (mem x m); intuition. -Qed. - -Lemma mem_find m x : mem x m = true <-> find x m <> None. -Proof. - rewrite <- mem_in_iff. apply in_find. -Qed. - -Lemma not_mem_find m x : mem x m = false <-> find x m = None. -Proof. - rewrite <- not_mem_in_iff. apply not_in_find. -Qed. - -Lemma In_dec m x : { In x m } + { ~ In x m }. -Proof. - generalize (mem_in_iff m x). - destruct (mem x m); [left|right]; intuition. -Qed. - -Lemma find_mapsto_iff m x e : MapsTo x e m <-> find x m = Some e. -Proof. symmetry. apply find_spec. Qed. - -Lemma equal_iff m m' cmp : Equivb cmp m m' <-> equal cmp m m' = true. -Proof. symmetry. apply equal_spec. Qed. - -Lemma empty_mapsto_iff x e : MapsTo x e empty <-> False. -Proof. -rewrite <- find_spec, empty_spec. now split. -Qed. - -Lemma not_in_empty x : ~In x (@empty elt). -Proof. -intros (e,H). revert H. apply empty_mapsto_iff. -Qed. - -Lemma empty_in_iff x : In x (@empty elt) <-> False. -Proof. -split; [ apply not_in_empty | destruct 1 ]. -Qed. - -Lemma is_empty_iff m : Empty m <-> is_empty m = true. -Proof. split; [apply is_empty_1 | apply is_empty_2 ]. Qed. - -Lemma add_mapsto_iff m x y e e' : - MapsTo y e' (add x e m) <-> - (E.eq x y /\ e=e') \/ - (~E.eq x y /\ MapsTo y e' m). -Proof. -split. -- intros H. destruct (E.eq_dec x y); [left|right]; split; trivial. - + symmetry. apply (mapsto_fun H); auto with map. - + now apply add_3 with x e. -- destruct 1 as [(H,H')|(H,H')]; subst; auto with map. -Qed. - -Lemma add_mapsto_new m x y e e' : ~In x m -> - MapsTo y e' (add x e m) <-> (E.eq x y /\ e=e') \/ MapsTo y e' m. -Proof. - intros. - rewrite add_mapsto_iff. intuition. - right; split; trivial. contradict H. exists e'. now rewrite H. -Qed. - -Lemma in_add m x y e : In y m -> In y (add x e m). -Proof. - destruct (E.eq_dec x y) as [<-|H']. - - now rewrite !in_find, add_spec1. - - now rewrite !in_find, add_spec2. -Qed. - -Lemma add_in_iff m x y e : In y (add x e m) <-> E.eq x y \/ In y m. -Proof. -split. -- intros H. destruct (E.eq_dec x y); [now left|right]. - rewrite in_find, add_spec2 in H; trivial. now apply in_find. -- intros [<-|H]. - + exists e. now apply add_1. - + now apply in_add. -Qed. - -Lemma add_neq_mapsto_iff m x y e e' : - ~ E.eq x y -> (MapsTo y e' (add x e m) <-> MapsTo y e' m). -Proof. -split; [apply add_3|apply add_2]; auto. -Qed. - -Lemma add_neq_in_iff m x y e : - ~ E.eq x y -> (In y (add x e m) <-> In y m). -Proof. -split; intros (e',H0); exists e'. -- now apply add_3 with x e. -- now apply add_2. -Qed. - -Lemma remove_mapsto_iff m x y e : - MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m. -Proof. -split; [split|destruct 1]. -- intro E. revert H. now rewrite <-E, <- find_spec, remove_spec1. -- now apply remove_3 with x. -- now apply remove_2. -Qed. - -Lemma remove_in_iff m x y : In y (remove x m) <-> ~E.eq x y /\ In y m. -Proof. -unfold In; split; [ intros (e,H) | intros (E,(e,H)) ]. -- apply remove_mapsto_iff in H. destruct H; split; trivial. - now exists e. -- exists e. now apply remove_2. -Qed. - -Lemma remove_neq_mapsto_iff : forall m x y e, - ~ E.eq x y -> (MapsTo y e (remove x m) <-> MapsTo y e m). -Proof. -split; [apply remove_3|apply remove_2]; auto. -Qed. - -Lemma remove_neq_in_iff : forall m x y, - ~ E.eq x y -> (In y (remove x m) <-> In y m). -Proof. -split; intros (e',H0); exists e'. -- now apply remove_3 with x. -- now apply remove_2. -Qed. - -Lemma bindings_mapsto_iff m x e : - MapsTo x e m <-> InA eq_key_elt (x,e) (bindings m). -Proof. symmetry. apply bindings_spec1. Qed. - -Lemma bindings_in_iff m x : - In x m <-> exists e, InA eq_key_elt (x,e) (bindings m). -Proof. -unfold In; split; intros (e,H); exists e; now apply bindings_spec1. -Qed. - -End IffSpec. - -Lemma map_mapsto_iff {elt elt'} m x b (f : elt -> elt') : - MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m. -Proof. -rewrite <-find_spec, map_spec. setoid_rewrite <- find_spec. -destruct (find x m); simpl; split. -- injection 1. now exists e. -- intros (a,(->,H)). now injection H as ->. -- discriminate. -- intros (a,(_,H)); discriminate. -Qed. - -Lemma map_in_iff {elt elt'} m x (f : elt -> elt') : - In x (map f m) <-> In x m. -Proof. -rewrite !in_find, map_spec. apply option_map_some. -Qed. - -Lemma mapi_in_iff {elt elt'} m x (f:key->elt->elt') : - In x (mapi f m) <-> In x m. -Proof. -rewrite !in_find. destruct (mapi_spec f m x) as (y,(_,->)). -apply option_map_some. -Qed. - -(** Unfortunately, we don't have simple equivalences for [mapi] - and [MapsTo]. The only correct one needs compatibility of [f]. *) - -Lemma mapi_inv {elt elt'} m x b (f : key -> elt -> elt') : - MapsTo x b (mapi f m) -> - exists a y, E.eq y x /\ b = f y a /\ MapsTo x a m. -Proof. -rewrite <- find_spec. setoid_rewrite <- find_spec. -destruct (mapi_spec f m x) as (y,(E,->)). -destruct (find x m); simpl. -- injection 1 as <-. now exists e, y. -- discriminate. -Qed. - -Lemma mapi_spec' {elt elt'} (f:key->elt->elt') : - Proper (E.eq==>Logic.eq==>Logic.eq) f -> - forall m x, - find x (mapi f m) = option_map (f x) (find x m). -Proof. - intros. destruct (mapi_spec f m x) as (y,(Hy,->)). - destruct (find x m); simpl; trivial. - now rewrite Hy. -Qed. - -Lemma mapi_1bis {elt elt'} m x e (f:key->elt->elt') : - Proper (E.eq==>Logic.eq==>Logic.eq) f -> - MapsTo x e m -> MapsTo x (f x e) (mapi f m). -Proof. -intros. destruct (mapi_1 f H0) as (y,(->,H2)). trivial. -Qed. - -Lemma mapi_mapsto_iff {elt elt'} m x b (f:key->elt->elt') : - Proper (E.eq==>Logic.eq==>Logic.eq) f -> - (MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m). -Proof. -rewrite <-find_spec. setoid_rewrite <-find_spec. -intros Pr. rewrite mapi_spec' by trivial. -destruct (find x m); simpl; split. -- injection 1 as <-. now exists e. -- intros (a,(->,H)). now injection H as <-. -- discriminate. -- intros (a,(_,H)). discriminate. -Qed. - -(** Things are even worse for [merge] : we don't try to state any - equivalence, see instead boolean results below. *) - -(** Useful tactic for simplifying expressions like - [In y (add x e (remove z m))] *) - -Ltac map_iff := - repeat (progress ( - rewrite add_mapsto_iff || rewrite add_in_iff || - rewrite remove_mapsto_iff || rewrite remove_in_iff || - rewrite empty_mapsto_iff || rewrite empty_in_iff || - rewrite map_mapsto_iff || rewrite map_in_iff || - rewrite mapi_in_iff)). - -(** ** Specifications written using boolean predicates *) - -Section BoolSpec. - -Lemma mem_find_b {elt}(m:t elt)(x:key) : - mem x m = if find x m then true else false. -Proof. -apply eq_bool_alt. rewrite mem_find. destruct (find x m). -- now split. -- split; (discriminate || now destruct 1). -Qed. - -Variable elt elt' elt'' : Type. -Implicit Types m : t elt. -Implicit Types x y z : key. -Implicit Types e : elt. - -Lemma mem_b m x y : E.eq x y -> mem x m = mem y m. -Proof. now intros ->. Qed. - -Lemma find_o m x y : E.eq x y -> find x m = find y m. -Proof. now intros ->. Qed. - -Lemma empty_o x : find x (@empty elt) = None. -Proof. apply empty_spec. Qed. - -Lemma empty_a x : mem x (@empty elt) = false. -Proof. apply not_mem_find. apply empty_spec. Qed. - -Lemma add_eq_o m x y e : - E.eq x y -> find y (add x e m) = Some e. -Proof. - intros <-. apply add_spec1. -Qed. - -Lemma add_neq_o m x y e : - ~ E.eq x y -> find y (add x e m) = find y m. -Proof. apply add_spec2. Qed. -Hint Resolve add_neq_o : map. - -Lemma add_o m x y e : - find y (add x e m) = if E.eq_dec x y then Some e else find y m. -Proof. -destruct (E.eq_dec x y); auto with map. -Qed. - -Lemma add_eq_b m x y e : - E.eq x y -> mem y (add x e m) = true. -Proof. -intros <-. apply mem_spec, add_in_iff. now left. -Qed. - -Lemma add_neq_b m x y e : - ~E.eq x y -> mem y (add x e m) = mem y m. -Proof. -intros. now rewrite !mem_find_b, add_neq_o. -Qed. - -Lemma add_b m x y e : - mem y (add x e m) = eqb x y || mem y m. -Proof. -rewrite !mem_find_b, add_o. unfold eqb. -now destruct (E.eq_dec x y). -Qed. - -Lemma remove_eq_o m x y : - E.eq x y -> find y (remove x m) = None. -Proof. intros ->. apply remove_spec1. Qed. - -Lemma remove_neq_o m x y : - ~ E.eq x y -> find y (remove x m) = find y m. -Proof. apply remove_spec2. Qed. - -Hint Resolve remove_eq_o remove_neq_o : map. - -Lemma remove_o m x y : - find y (remove x m) = if E.eq_dec x y then None else find y m. -Proof. -destruct (E.eq_dec x y); auto with map. -Qed. - -Lemma remove_eq_b m x y : - E.eq x y -> mem y (remove x m) = false. -Proof. -intros <-. now rewrite mem_find_b, remove_eq_o. -Qed. - -Lemma remove_neq_b m x y : - ~ E.eq x y -> mem y (remove x m) = mem y m. -Proof. -intros. now rewrite !mem_find_b, remove_neq_o. -Qed. - -Lemma remove_b m x y : - mem y (remove x m) = negb (eqb x y) && mem y m. -Proof. -rewrite !mem_find_b, remove_o; unfold eqb. -now destruct (E.eq_dec x y). -Qed. - -Lemma map_o m x (f:elt->elt') : - find x (map f m) = option_map f (find x m). -Proof. apply map_spec. Qed. - -Lemma map_b m x (f:elt->elt') : - mem x (map f m) = mem x m. -Proof. -rewrite !mem_find_b, map_o. now destruct (find x m). -Qed. - -Lemma mapi_b m x (f:key->elt->elt') : - mem x (mapi f m) = mem x m. -Proof. -apply eq_bool_alt; rewrite !mem_spec. apply mapi_in_iff. -Qed. - -Lemma mapi_o m x (f:key->elt->elt') : - Proper (E.eq==>Logic.eq==>Logic.eq) f -> - find x (mapi f m) = option_map (f x) (find x m). -Proof. intros; now apply mapi_spec'. Qed. - -Lemma merge_spec1' (f:key->option elt->option elt'->option elt'') : - Proper (E.eq==>Logic.eq==>Logic.eq==>Logic.eq) f -> - forall (m:t elt)(m':t elt') x, - In x m \/ In x m' -> - find x (merge f m m') = f x (find x m) (find x m'). -Proof. - intros Hf m m' x H. - now destruct (merge_spec1 f H) as (y,(->,->)). -Qed. - -Lemma merge_spec1_none (f:key->option elt->option elt'->option elt'') : - (forall x, f x None None = None) -> - forall (m: t elt)(m': t elt') x, - exists y, E.eq y x /\ find x (merge f m m') = f y (find x m) (find x m'). -Proof. -intros Hf m m' x. -destruct (find x m) as [e|] eqn:Hm. -- assert (H : In x m \/ In x m') by (left; exists e; now apply find_spec). - destruct (merge_spec1 f H) as (y,(Hy,->)). - exists y; split; trivial. now rewrite Hm. -- destruct (find x m') as [e|] eqn:Hm'. - + assert (H : In x m \/ In x m') by (right; exists e; now apply find_spec). - destruct (merge_spec1 f H) as (y,(Hy,->)). - exists y; split; trivial. now rewrite Hm, Hm'. - + exists x. split. reflexivity. rewrite Hf. - apply not_in_find. intro H. - apply merge_spec2 in H. apply not_in_find in Hm. apply not_in_find in Hm'. - intuition. -Qed. - -Lemma merge_spec1'_none (f:key->option elt->option elt'->option elt'') : - Proper (E.eq==>Logic.eq==>Logic.eq==>Logic.eq) f -> - (forall x, f x None None = None) -> - forall (m: t elt)(m': t elt') x, - find x (merge f m m') = f x (find x m) (find x m'). -Proof. - intros Hf Hf' m m' x. - now destruct (merge_spec1_none Hf' m m' x) as (y,(->,->)). -Qed. - -Lemma bindings_o : forall m x, - find x m = findA (eqb x) (bindings m). -Proof. -intros. rewrite eq_option_alt. intro e. -rewrite <- find_mapsto_iff, bindings_mapsto_iff. -unfold eqb. -rewrite <- findA_NoDupA; dintuition; try apply bindings_3w; eauto. -Qed. - -Lemma bindings_b : forall m x, - mem x m = existsb (fun p => eqb x (fst p)) (bindings m). -Proof. -intros. -apply eq_bool_alt. -rewrite mem_spec, bindings_in_iff, existsb_exists. -split. -- intros (e,H). - rewrite InA_alt in H. - destruct H as ((k,e'),((H1,H2),H')); simpl in *; subst e'. - exists (k, e); split; trivial. simpl. now apply eqb_eq. -- intros ((k,e),(H,H')); simpl in *. apply eqb_eq in H'. - exists e. rewrite InA_alt. exists (k,e). now repeat split. -Qed. - -End BoolSpec. - -Section Equalities. -Variable elt:Type. - -(** A few basic equalities *) - -Lemma eq_empty (m: t elt) : m == empty <-> is_empty m = true. -Proof. - unfold Equal. rewrite is_empty_spec. now setoid_rewrite empty_spec. -Qed. - -Lemma add_id (m: t elt) x e : add x e m == m <-> find x m = Some e. -Proof. - split. - - intros H. rewrite <- (H x). apply add_spec1. - - intros H y. rewrite !add_o. now destruct E.eq_dec as [<-|E]. -Qed. - -Lemma add_add_1 (m: t elt) x e : - add x e (add x e m) == add x e m. -Proof. - intros y. rewrite !add_o. destruct E.eq_dec; auto. -Qed. - -Lemma add_add_2 (m: t elt) x x' e e' : - ~E.eq x x' -> add x e (add x' e' m) == add x' e' (add x e m). -Proof. - intros H y. rewrite !add_o. - do 2 destruct E.eq_dec; auto. - elim H. now transitivity y. -Qed. - -Lemma remove_id (m: t elt) x : remove x m == m <-> ~In x m. -Proof. - rewrite not_in_find. split. - - intros H. rewrite <- (H x). apply remove_spec1. - - intros H y. rewrite !remove_o. now destruct E.eq_dec as [<-|E]. -Qed. - -Lemma remove_remove_1 (m: t elt) x : - remove x (remove x m) == remove x m. -Proof. - intros y. rewrite !remove_o. destruct E.eq_dec; auto. -Qed. - -Lemma remove_remove_2 (m: t elt) x x' : - remove x (remove x' m) == remove x' (remove x m). -Proof. - intros y. rewrite !remove_o. do 2 destruct E.eq_dec; auto. -Qed. - -Lemma remove_add_1 (m: t elt) x e : - remove x (add x e m) == remove x m. -Proof. - intro y. rewrite !remove_o, !add_o. now destruct E.eq_dec. -Qed. - -Lemma remove_add_2 (m: t elt) x x' e : - ~E.eq x x' -> remove x' (add x e m) == add x e (remove x' m). -Proof. - intros H y. rewrite !remove_o, !add_o. - do 2 destruct E.eq_dec; auto. - - elim H; now transitivity y. - - symmetry. now apply remove_eq_o. - - symmetry. now apply remove_neq_o. -Qed. - -Lemma add_remove_1 (m: t elt) x e : - add x e (remove x m) == add x e m. -Proof. - intro y. rewrite !add_o, !remove_o. now destruct E.eq_dec. -Qed. - -(** Another characterisation of [Equal] *) - -Lemma Equal_mapsto_iff : forall m1 m2 : t elt, - m1 == m2 <-> (forall k e, MapsTo k e m1 <-> MapsTo k e m2). -Proof. -intros m1 m2. split; [intros Heq k e|intros Hiff]. -rewrite 2 find_mapsto_iff, Heq. split; auto. -intro k. rewrite eq_option_alt. intro e. -rewrite <- 2 find_mapsto_iff; auto. -Qed. - -(** * Relations between [Equal], [Equiv] and [Equivb]. *) - -(** First, [Equal] is [Equiv] with Leibniz on elements. *) - -Lemma Equal_Equiv : forall (m m' : t elt), - m == m' <-> Equiv Logic.eq m m'. -Proof. -intros. rewrite Equal_mapsto_iff. split; intros. -- split. - + split; intros (e,Hin); exists e; [rewrite <- H|rewrite H]; auto. - + intros; apply mapsto_fun with m k; auto; rewrite H; auto. -- split; intros H'. - + destruct H. - assert (Hin : In k m') by (rewrite <- H; exists e; auto). - destruct Hin as (e',He'). - rewrite (H0 k e e'); auto. - + destruct H. - assert (Hin : In k m) by (rewrite H; exists e; auto). - destruct Hin as (e',He'). - rewrite <- (H0 k e' e); auto. -Qed. - -(** [Equivb] and [Equiv] and equivalent when [eq_elt] and [cmp] - are related. *) - -Section Cmp. -Variable eq_elt : elt->elt->Prop. -Variable cmp : elt->elt->bool. - -Definition compat_cmp := - forall e e', cmp e e' = true <-> eq_elt e e'. - -Lemma Equiv_Equivb : compat_cmp -> - forall m m', Equiv eq_elt m m' <-> Equivb cmp m m'. -Proof. - unfold Equivb, Equiv, Cmp; intuition. - red in H; rewrite H; eauto. - red in H; rewrite <-H; eauto. -Qed. -End Cmp. - -(** Composition of the two last results: relation between [Equal] - and [Equivb]. *) - -Lemma Equal_Equivb : forall cmp, - (forall e e', cmp e e' = true <-> e = e') -> - forall (m m':t elt), m == m' <-> Equivb cmp m m'. -Proof. - intros; rewrite Equal_Equiv. - apply Equiv_Equivb; auto. -Qed. - -Lemma Equal_Equivb_eqdec : - forall eq_elt_dec : (forall e e', { e = e' } + { e <> e' }), - let cmp := fun e e' => if eq_elt_dec e e' then true else false in - forall (m m':t elt), m == m' <-> Equivb cmp m m'. -Proof. -intros; apply Equal_Equivb. -unfold cmp; clear cmp; intros. -destruct eq_elt_dec; now intuition. -Qed. - -End Equalities. - -(** * Results about [fold], [bindings], induction principles... *) - -Section Elt. - Variable elt:Type. - - Definition Add x (e:elt) m m' := m' == (add x e m). - - Notation eqke := (@eq_key_elt elt). - Notation eqk := (@eq_key elt). - - Instance eqk_equiv : Equivalence eqk. - Proof. unfold eq_key. destruct E.eq_equiv. constructor; eauto. Qed. - - Instance eqke_equiv : Equivalence eqke. - Proof. - unfold eq_key_elt; split; repeat red; intuition; simpl in *; - etransitivity; eauto. - Qed. - - (** Complements about InA, NoDupA and findA *) - - Lemma InA_eqke_eqk k k' e e' l : - E.eq k k' -> InA eqke (k,e) l -> InA eqk (k',e') l. - Proof. - intros Hk. rewrite 2 InA_alt. - intros ((k'',e'') & (Hk'',He'') & H); simpl in *; subst e''. - exists (k'',e); split; auto. red; simpl. now transitivity k. - Qed. - - Lemma NoDupA_incl {A} (R R':relation A) : - (forall x y, R x y -> R' x y) -> - forall l, NoDupA R' l -> NoDupA R l. - Proof. - intros Incl. - induction 1 as [ | a l E _ IH ]; constructor; auto. - contradict E. revert E. rewrite 2 InA_alt. firstorder. - Qed. - - Lemma NoDupA_eqk_eqke l : NoDupA eqk l -> NoDupA eqke l. - Proof. - apply NoDupA_incl. now destruct 1. - Qed. - - Lemma findA_rev l k : NoDupA eqk l -> - findA (eqb k) l = findA (eqb k) (rev l). - Proof. - intros H. apply eq_option_alt. intros e. unfold eqb. - rewrite <- !findA_NoDupA, InA_rev; eauto with map. reflexivity. - change (NoDupA eqk (rev l)). apply NoDupA_rev; auto using eqk_equiv. - Qed. - - (** * Bindings *) - - Lemma bindings_Empty (m:t elt) : Empty m <-> bindings m = nil. - Proof. - unfold Empty. split; intros H. - - assert (H' : forall a, ~ List.In a (bindings m)). - { intros (k,e) H'. apply (H k e). - rewrite bindings_mapsto_iff, InA_alt. - exists (k,e); repeat split; auto with map. } - destruct (bindings m) as [|p l]; trivial. - destruct (H' p); simpl; auto. - - intros x e. rewrite bindings_mapsto_iff, InA_alt. - rewrite H. now intros (y,(E,H')). - Qed. - - Lemma bindings_empty : bindings (@empty elt) = nil. - Proof. - rewrite <-bindings_Empty; apply empty_1. - Qed. - - (** * Conversions between maps and association lists. *) - - Definition uncurry {U V W : Type} (f : U -> V -> W) : U*V -> W := - fun p => f (fst p) (snd p). - - Definition of_list := - List.fold_right (uncurry (@add _)) (@empty elt). - - Definition to_list := bindings. - - Lemma of_list_1 : forall l k e, - NoDupA eqk l -> - (MapsTo k e (of_list l) <-> InA eqke (k,e) l). - Proof. - induction l as [|(k',e') l IH]; simpl; intros k e Hnodup. - - rewrite empty_mapsto_iff, InA_nil; intuition. - - unfold uncurry; simpl. - inversion_clear Hnodup as [| ? ? Hnotin Hnodup']. - specialize (IH k e Hnodup'); clear Hnodup'. - rewrite add_mapsto_iff, InA_cons, <- IH. - unfold eq_key_elt at 1; simpl. - split; destruct 1 as [H|H]; try (intuition;fail). - destruct (E.eq_dec k k'); [left|right]; split; auto with map. - contradict Hnotin. - apply InA_eqke_eqk with k e; intuition. - Qed. - - Lemma of_list_1b : forall l k, - NoDupA eqk l -> - find k (of_list l) = findA (eqb k) l. - Proof. - induction l as [|(k',e') l IH]; simpl; intros k Hnodup. - apply empty_o. - unfold uncurry; simpl. - inversion_clear Hnodup as [| ? ? Hnotin Hnodup']. - specialize (IH k Hnodup'); clear Hnodup'. - rewrite add_o, IH, eqb_sym. unfold eqb; now destruct E.eq_dec. - Qed. - - Lemma of_list_2 : forall l, NoDupA eqk l -> - equivlistA eqke l (to_list (of_list l)). - Proof. - intros l Hnodup (k,e). - rewrite <- bindings_mapsto_iff, of_list_1; intuition. - Qed. - - Lemma of_list_3 : forall s, Equal (of_list (to_list s)) s. - Proof. - intros s k. - rewrite of_list_1b, bindings_o; auto. - apply bindings_3w. - Qed. - - (** * Fold *) - - (** Alternative specification via [fold_right] *) - - Lemma fold_spec_right m (A:Type)(i:A)(f : key -> elt -> A -> A) : - fold f m i = List.fold_right (uncurry f) i (rev (bindings m)). - Proof. - rewrite fold_1. symmetry. apply fold_left_rev_right. - Qed. - - (** ** Induction principles about fold contributed by S. Lescuyer *) - - (** In the following lemma, the step hypothesis is deliberately restricted - to the precise map m we are considering. *) - - Lemma fold_rec : - forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A), - forall (i:A)(m:t elt), - (forall m, Empty m -> P m i) -> - (forall k e a m' m'', MapsTo k e m -> ~In k m' -> - Add k e m' m'' -> P m' a -> P m'' (f k e a)) -> - P m (fold f m i). - Proof. - intros A P f i m Hempty Hstep. - rewrite fold_spec_right. - set (F:=uncurry f). - set (l:=rev (bindings m)). - assert (Hstep' : forall k e a m' m'', InA eqke (k,e) l -> ~In k m' -> - Add k e m' m'' -> P m' a -> P m'' (F (k,e) a)). - { - intros k e a m' m'' H ? ? ?; eapply Hstep; eauto. - revert H; unfold l; rewrite InA_rev, bindings_mapsto_iff; auto with *. } - assert (Hdup : NoDupA eqk l). - { unfold l. apply NoDupA_rev; try red; unfold eq_key ; eauto with *. - apply bindings_3w. } - assert (Hsame : forall k, find k m = findA (eqb k) l). - { intros k. unfold l. rewrite bindings_o, findA_rev; auto. - apply bindings_3w. } - clearbody l. clearbody F. clear Hstep f. revert m Hsame. induction l. - - (* empty *) - intros m Hsame; simpl. - apply Hempty. intros k e. - rewrite find_mapsto_iff, Hsame; simpl; discriminate. - - (* step *) - intros m Hsame; destruct a as (k,e); simpl. - apply Hstep' with (of_list l); auto. - + rewrite InA_cons; left; red; auto with map. - + inversion_clear Hdup. contradict H. destruct H as (e',He'). - apply InA_eqke_eqk with k e'; auto with map. - rewrite <- of_list_1; auto. - + intro k'. rewrite Hsame, add_o, of_list_1b. simpl. - rewrite eqb_sym. unfold eqb. now destruct E.eq_dec. - inversion_clear Hdup; auto with map. - + apply IHl. - * intros; eapply Hstep'; eauto. - * inversion_clear Hdup; auto. - * intros; apply of_list_1b. inversion_clear Hdup; auto. - Qed. - - (** Same, with [empty] and [add] instead of [Empty] and [Add]. In this - case, [P] must be compatible with equality of sets *) - - Theorem fold_rec_bis : - forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A), - forall (i:A)(m:t elt), - (forall m m' a, Equal m m' -> P m a -> P m' a) -> - (P empty i) -> - (forall k e a m', MapsTo k e m -> ~In k m' -> - P m' a -> P (add k e m') (f k e a)) -> - P m (fold f m i). - Proof. - intros A P f i m Pmorphism Pempty Pstep. - apply fold_rec; intros. - apply Pmorphism with empty; auto. intro k. rewrite empty_o. - case_eq (find k m0); auto; intros e'; rewrite <- find_mapsto_iff. - intro H'; elim (H k e'); auto. - apply Pmorphism with (add k e m'); try intro; auto. - Qed. - - Lemma fold_rec_nodep : - forall (A:Type)(P : A -> Type)(f : key -> elt -> A -> A)(i:A)(m:t elt), - P i -> (forall k e a, MapsTo k e m -> P a -> P (f k e a)) -> - P (fold f m i). - Proof. - intros; apply fold_rec_bis with (P:=fun _ => P); auto. - Qed. - - (** [fold_rec_weak] is a weaker principle than [fold_rec_bis] : - the step hypothesis must here be applicable anywhere. - At the same time, it looks more like an induction principle, - and hence can be easier to use. *) - - Lemma fold_rec_weak : - forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A)(i:A), - (forall m m' a, Equal m m' -> P m a -> P m' a) -> - P empty i -> - (forall k e a m, ~In k m -> P m a -> P (add k e m) (f k e a)) -> - forall m, P m (fold f m i). - Proof. - intros; apply fold_rec_bis; auto. - Qed. - - Lemma fold_rel : - forall (A B:Type)(R : A -> B -> Type) - (f : key -> elt -> A -> A)(g : key -> elt -> B -> B)(i : A)(j : B) - (m : t elt), - R i j -> - (forall k e a b, MapsTo k e m -> R a b -> R (f k e a) (g k e b)) -> - R (fold f m i) (fold g m j). - Proof. - intros A B R f g i j m Rempty Rstep. - rewrite 2 fold_spec_right. set (l:=rev (bindings m)). - assert (Rstep' : forall k e a b, InA eqke (k,e) l -> - R a b -> R (f k e a) (g k e b)). - { intros; apply Rstep; auto. - rewrite bindings_mapsto_iff, <- InA_rev; auto with map. } - clearbody l; clear Rstep m. - induction l; simpl; auto. - apply Rstep'; auto. - destruct a; simpl; rewrite InA_cons; left; red; auto with map. - Qed. - - (** From the induction principle on [fold], we can deduce some general - induction principles on maps. *) - - Lemma map_induction : - forall P : t elt -> Type, - (forall m, Empty m -> P m) -> - (forall m m', P m -> forall x e, ~In x m -> Add x e m m' -> P m') -> - forall m, P m. - Proof. - intros. apply (@fold_rec _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto. - Qed. - - Lemma map_induction_bis : - forall P : t elt -> Type, - (forall m m', Equal m m' -> P m -> P m') -> - P empty -> - (forall x e m, ~In x m -> P m -> P (add x e m)) -> - forall m, P m. - Proof. - intros. - apply (@fold_rec_bis _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto. - Qed. - - (** [fold] can be used to reconstruct the same initial set. *) - - Lemma fold_identity : forall m : t elt, Equal (fold (@add _) m empty) m. - Proof. - intros. - apply fold_rec with (P:=fun m acc => Equal acc m); auto with map. - intros m' Heq k'. - rewrite empty_o. - case_eq (find k' m'); auto; intros e'; rewrite <- find_mapsto_iff. - intro; elim (Heq k' e'); auto. - intros k e a m' m'' _ _ Hadd Heq k'. - red in Heq. rewrite Hadd, 2 add_o, Heq; auto. - Qed. - - Section Fold_More. - - (** ** Additional properties of fold *) - - (** When a function [f] is compatible and allows transpositions, we can - compute [fold f] in any order. *) - - Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA). - - Lemma fold_Empty (f:key->elt->A->A) : - forall m i, Empty m -> eqA (fold f m i) i. - Proof. - intros. apply fold_rec_nodep with (P:=fun a => eqA a i). - reflexivity. - intros. elim (H k e); auto. - Qed. - - Lemma fold_init (f:key->elt->A->A) : - Proper (E.eq==>eq==>eqA==>eqA) f -> - forall m i i', eqA i i' -> eqA (fold f m i) (fold f m i'). - Proof. - intros Hf m i i' Hi. apply fold_rel with (R:=eqA); auto. - intros. now apply Hf. - Qed. - - (** Transpositions of f (a.k.a diamond property). - Could we swap two sequential calls to f, i.e. do we have: - - f k e (f k' e' a) == f k' e' (f k e a) - - First, we do no need this equation for all keys, but only - when k and k' aren't equal, as suggested by Pierre Castéran. - Think for instance of [f] being [M.add] : in general, we don't have - [M.add k e (M.add k e' m) == M.add k e' (M.add k e m)]. - Fortunately, we will never encounter this situation during a real - [fold], since the keys received by this [fold] are unique. - NB: without this condition, this condition would be - [SetoidList.transpose2]. - - Secondly, instead of the equation above, we now use a statement - with more basic equalities, allowing to prove [fold_commutes] even - when [f] isn't a morphism. - NB: When [f] is a morphism, [Diamond f] gives back the equation above. -*) - - Definition Diamond (f:key->elt->A->A) := - forall k k' e e' a b b', ~E.eq k k' -> - eqA (f k e a) b -> eqA (f k' e' a) b' -> eqA (f k e b') (f k' e' b). - - Lemma fold_commutes (f:key->elt->A->A) : - Diamond f -> - forall i m k e, ~In k m -> - eqA (fold f m (f k e i)) (f k e (fold f m i)). - Proof. - intros Hf i m k e H. - apply fold_rel with (R:= fun a b => eqA a (f k e b)); auto. - - reflexivity. - - intros k' e' b a Hm E. - apply Hf with a; try easy. - contradict H; rewrite <- H. now exists e'. - Qed. - - Hint Resolve NoDupA_eqk_eqke NoDupA_rev bindings_3w : map. - - Lemma fold_Proper (f:key->elt->A->A) : - Proper (E.eq==>eq==>eqA==>eqA) f -> - Diamond f -> - Proper (Equal==>eqA==>eqA) (fold f). - Proof. - intros Hf Hf' m1 m2 Hm i j Hi. - rewrite 2 fold_spec_right. - assert (NoDupA eqk (rev (bindings m1))) by (auto with * ). - assert (NoDupA eqk (rev (bindings m2))) by (auto with * ). - apply fold_right_equivlistA_restr2 with (R:=complement eqk)(eqA:=eqke) - ; auto with *. - - intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; simpl in *. now apply Hf. - - unfold complement, eq_key, eq_key_elt; repeat red. intuition eauto with map. - - intros (k,e) (k',e') z z' h h'; unfold eq_key, uncurry;simpl; auto. - rewrite h'. eapply Hf'; now eauto. - - rewrite <- NoDupA_altdef; auto. - - intros (k,e). - rewrite 2 InA_rev, <- 2 bindings_mapsto_iff, 2 find_mapsto_iff, Hm; - auto with *. - Qed. - - Lemma fold_Equal (f:key->elt->A->A) : - Proper (E.eq==>eq==>eqA==>eqA) f -> - Diamond f -> - forall m1 m2 i, - Equal m1 m2 -> - eqA (fold f m1 i) (fold f m2 i). - Proof. - intros. now apply fold_Proper. - Qed. - - Lemma fold_Add (f:key->elt->A->A) : - Proper (E.eq==>eq==>eqA==>eqA) f -> - Diamond f -> - forall m1 m2 k e i, ~In k m1 -> Add k e m1 m2 -> - eqA (fold f m2 i) (f k e (fold f m1 i)). - Proof. - intros Hf Hf' m1 m2 k e i Hm1 Hm2. - rewrite 2 fold_spec_right. - set (f':=uncurry f). - change (f k e (fold_right f' i (rev (bindings m1)))) - with (f' (k,e) (fold_right f' i (rev (bindings m1)))). - assert (NoDupA eqk (rev (bindings m1))) by (auto with * ). - assert (NoDupA eqk (rev (bindings m2))) by (auto with * ). - apply fold_right_add_restr with - (R:=complement eqk)(eqA:=eqke); auto with *. - - intros (k1,e1) (k2,e2) (Hk,He) a a' Ha; unfold f'; simpl in *. now apply Hf. - - unfold complement, eq_key_elt, eq_key; repeat red; intuition eauto with map. - - intros (k1,e1) (k2,e2) z1 z2; unfold eq_key, f', uncurry; simpl. - eapply Hf'; now eauto. - - rewrite <- NoDupA_altdef; auto. - - rewrite InA_rev, <- bindings_mapsto_iff by (auto with * ). firstorder. - - intros (a,b). - rewrite InA_cons, 2 InA_rev, <- 2 bindings_mapsto_iff, - 2 find_mapsto_iff by (auto with * ). - unfold eq_key_elt; simpl. - rewrite Hm2, !find_spec, add_mapsto_new; intuition. - Qed. - - Lemma fold_add (f:key->elt->A->A) : - Proper (E.eq==>eq==>eqA==>eqA) f -> - Diamond f -> - forall m k e i, ~In k m -> - eqA (fold f (add k e m) i) (f k e (fold f m i)). - Proof. - intros. now apply fold_Add. - Qed. - - End Fold_More. - - (** * Cardinal *) - - Lemma cardinal_fold (m : t elt) : - cardinal m = fold (fun _ _ => S) m 0. - Proof. - rewrite cardinal_1, fold_1. - symmetry; apply fold_left_length; auto. - Qed. - - Lemma cardinal_Empty : forall m : t elt, - Empty m <-> cardinal m = 0. - Proof. - intros. - rewrite cardinal_1, bindings_Empty. - destruct (bindings m); intuition; discriminate. - Qed. - - Lemma Equal_cardinal (m m' : t elt) : - Equal m m' -> cardinal m = cardinal m'. - Proof. - intro. rewrite 2 cardinal_fold. - apply fold_Equal with (eqA:=eq); try congruence; auto with map. - Qed. - - Lemma cardinal_0 (m : t elt) : Empty m -> cardinal m = 0. - Proof. - intros; rewrite <- cardinal_Empty; auto. - Qed. - - Lemma cardinal_S m m' x e : - ~ In x m -> Add x e m m' -> cardinal m' = S (cardinal m). - Proof. - intros. rewrite 2 cardinal_fold. - change S with ((fun _ _ => S) x e). - apply fold_Add with (eqA:=eq); try congruence; auto with map. - Qed. - - Lemma cardinal_inv_1 : forall m : t elt, - cardinal m = 0 -> Empty m. - Proof. - intros; rewrite cardinal_Empty; auto. - Qed. - Hint Resolve cardinal_inv_1 : map. - - Lemma cardinal_inv_2 : - forall m n, cardinal m = S n -> { p : key*elt | MapsTo (fst p) (snd p) m }. - Proof. - intros; rewrite M.cardinal_spec in *. - generalize (bindings_mapsto_iff m). - destruct (bindings m); try discriminate. - exists p; auto. - rewrite H0; destruct p; simpl; auto. - constructor; red; auto with map. - Qed. - - Lemma cardinal_inv_2b : - forall m, cardinal m <> 0 -> { p : key*elt | MapsTo (fst p) (snd p) m }. - Proof. - intros. - generalize (@cardinal_inv_2 m); destruct cardinal. - elim H;auto. - eauto. - Qed. - - Lemma not_empty_mapsto (m : t elt) : - ~Empty m -> exists k e, MapsTo k e m. - Proof. - intro. - destruct (@cardinal_inv_2b m) as ((k,e),H'). - contradict H. now apply cardinal_inv_1. - exists k; now exists e. - Qed. - - Lemma not_empty_in (m:t elt) : - ~Empty m -> exists k, In k m. - Proof. - intro. destruct (not_empty_mapsto H) as (k,Hk). - now exists k. - Qed. - - (** * Additional notions over maps *) - - Definition Disjoint (m m' : t elt) := - forall k, ~(In k m /\ In k m'). - - Definition Partition (m m1 m2 : t elt) := - Disjoint m1 m2 /\ - (forall k e, MapsTo k e m <-> MapsTo k e m1 \/ MapsTo k e m2). - - (** * Emulation of some functions lacking in the interface *) - - Definition filter (f : key -> elt -> bool)(m : t elt) := - fold (fun k e m => if f k e then add k e m else m) m empty. - - Definition for_all (f : key -> elt -> bool)(m : t elt) := - fold (fun k e b => if f k e then b else false) m true. - - Definition exists_ (f : key -> elt -> bool)(m : t elt) := - fold (fun k e b => if f k e then true else b) m false. - - Definition partition (f : key -> elt -> bool)(m : t elt) := - (filter f m, filter (fun k e => negb (f k e)) m). - - (** [update] adds to [m1] all the bindings of [m2]. It can be seen as - an [union] operator which gives priority to its 2nd argument - in case of binding conflit. *) - - Definition update (m1 m2 : t elt) := fold (@add _) m2 m1. - - (** [restrict] keeps from [m1] only the bindings whose key is in [m2]. - It can be seen as an [inter] operator, with priority to its 1st argument - in case of binding conflit. *) - - Definition restrict (m1 m2 : t elt) := filter (fun k _ => mem k m2) m1. - - (** [diff] erases from [m1] all bindings whose key is in [m2]. *) - - Definition diff (m1 m2 : t elt) := filter (fun k _ => negb (mem k m2)) m1. - - (** Properties of these abbreviations *) - - Lemma filter_iff (f : key -> elt -> bool) : - Proper (E.eq==>eq==>eq) f -> - forall m k e, - MapsTo k e (filter f m) <-> MapsTo k e m /\ f k e = true. - Proof. - unfold filter. - set (f':=fun k e m => if f k e then add k e m else m). - intros Hf m. pattern m, (fold f' m empty). apply fold_rec. - - - intros m' Hm' k e. rewrite empty_mapsto_iff. intuition. - elim (Hm' k e); auto. - - - intros k e acc m1 m2 Hke Hn Hadd IH k' e'. - change (Equal m2 (add k e m1)) in Hadd; rewrite Hadd. - unfold f'; simpl. - rewrite add_mapsto_new by trivial. - case_eq (f k e); intros Hfke; simpl; - rewrite ?add_mapsto_iff, IH; clear IH; intuition. - + rewrite <- Hfke; apply Hf; auto with map. - + right. repeat split; trivial. contradict Hn. rewrite Hn. now exists e'. - + assert (f k e = f k' e') by (apply Hf; auto). congruence. - Qed. - - Lemma for_all_filter f m : - for_all f m = is_empty (filter (fun k e => negb (f k e)) m). - Proof. - unfold for_all, filter. - eapply fold_rel with (R:=fun x y => x = is_empty y). - - symmetry. apply is_empty_iff. apply empty_1. - - intros; subst. destruct (f k e); simpl; trivial. - symmetry. apply not_true_is_false. rewrite is_empty_spec. - intros H'. specialize (H' k). now rewrite add_spec1 in H'. - Qed. - - Lemma exists_filter f m : - exists_ f m = negb (is_empty (filter f m)). - Proof. - unfold for_all, filter. - eapply fold_rel with (R:=fun x y => x = negb (is_empty y)). - - symmetry. rewrite negb_false_iff. apply is_empty_iff. apply empty_1. - - intros; subst. destruct (f k e); simpl; trivial. - symmetry. rewrite negb_true_iff. apply not_true_is_false. - rewrite is_empty_spec. - intros H'. specialize (H' k). now rewrite add_spec1 in H'. - Qed. - - Lemma for_all_iff f m : - Proper (E.eq==>eq==>eq) f -> - (for_all f m = true <-> (forall k e, MapsTo k e m -> f k e = true)). - Proof. - intros Hf. - rewrite for_all_filter. - rewrite <- is_empty_iff. unfold Empty. - split; intros H k e; specialize (H k e); - rewrite filter_iff in * by solve_proper; intuition. - - destruct (f k e); auto. - - now rewrite H0 in H2. - Qed. - - Lemma exists_iff f m : - Proper (E.eq==>eq==>eq) f -> - (exists_ f m = true <-> - (exists k e, MapsTo k e m /\ f k e = true)). - Proof. - intros Hf. - rewrite exists_filter. rewrite negb_true_iff. - rewrite <- not_true_iff_false, <- is_empty_iff. - split. - - intros H. apply not_empty_mapsto in H. now setoid_rewrite filter_iff in H. - - unfold Empty. setoid_rewrite filter_iff; trivial. firstorder. - Qed. - - Lemma Disjoint_alt : forall m m', - Disjoint m m' <-> - (forall k e e', MapsTo k e m -> MapsTo k e' m' -> False). - Proof. - unfold Disjoint; split. - intros H k v v' H1 H2. - apply H with k; split. - exists v; trivial. - exists v'; trivial. - intros H k ((v,Hv),(v',Hv')). - eapply H; eauto. - Qed. - - Section Partition. - Variable f : key -> elt -> bool. - Hypothesis Hf : Proper (E.eq==>eq==>eq) f. - - Lemma partition_iff_1 : forall m m1 k e, - m1 = fst (partition f m) -> - (MapsTo k e m1 <-> MapsTo k e m /\ f k e = true). - Proof. - unfold partition; simpl; intros. subst m1. - apply filter_iff; auto. - Qed. - - Lemma partition_iff_2 : forall m m2 k e, - m2 = snd (partition f m) -> - (MapsTo k e m2 <-> MapsTo k e m /\ f k e = false). - Proof. - unfold partition; simpl; intros. subst m2. - rewrite filter_iff. - split; intros (H,H'); split; auto. - destruct (f k e); simpl in *; auto. - rewrite H'; auto. - repeat red; intros. f_equal. apply Hf; auto. - Qed. - - Lemma partition_Partition : forall m m1 m2, - partition f m = (m1,m2) -> Partition m m1 m2. - Proof. - intros. split. - rewrite Disjoint_alt. intros k e e'. - rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2) - by (rewrite H; auto). - intros (U,V) (W,Z). rewrite <- (mapsto_fun U W) in Z; congruence. - intros k e. - rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2) - by (rewrite H; auto). - destruct (f k e); intuition. - Qed. - - End Partition. - - Lemma Partition_In : forall m m1 m2 k, - Partition m m1 m2 -> In k m -> {In k m1}+{In k m2}. - Proof. - intros m m1 m2 k Hm Hk. - destruct (In_dec m1 k) as [H|H]; [left|right]; auto. - destruct Hm as (Hm,Hm'). - destruct Hk as (e,He); rewrite Hm' in He; destruct He. - elim H; exists e; auto. - exists e; auto. - Defined. - - Lemma Disjoint_sym : forall m1 m2, Disjoint m1 m2 -> Disjoint m2 m1. - Proof. - intros m1 m2 H k (H1,H2). elim (H k); auto. - Qed. - - Lemma Partition_sym : forall m m1 m2, - Partition m m1 m2 -> Partition m m2 m1. - Proof. - intros m m1 m2 (H,H'); split. - apply Disjoint_sym; auto. - intros; rewrite H'; intuition. - Qed. - - Lemma Partition_Empty : forall m m1 m2, Partition m m1 m2 -> - (Empty m <-> (Empty m1 /\ Empty m2)). - Proof. - intros m m1 m2 (Hdisj,Heq). split. - intro He. - split; intros k e Hke; elim (He k e); rewrite Heq; auto. - intros (He1,He2) k e Hke. rewrite Heq in Hke. destruct Hke. - elim (He1 k e); auto. - elim (He2 k e); auto. - Qed. - - Lemma Partition_Add : - forall m m' x e , ~In x m -> Add x e m m' -> - forall m1 m2, Partition m' m1 m2 -> - exists m3, (Add x e m3 m1 /\ Partition m m3 m2 \/ - Add x e m3 m2 /\ Partition m m1 m3). - Proof. - unfold Partition. intros m m' x e Hn Hadd m1 m2 (Hdisj,Hor). - assert (Heq : Equal m (remove x m')). - { change (Equal m' (add x e m)) in Hadd. rewrite Hadd. - intro k. rewrite remove_o, add_o. - destruct E.eq_dec as [He|Hne]; auto. - rewrite <- He, <- not_find_in_iff; auto. } - assert (H : MapsTo x e m'). - { change (Equal m' (add x e m)) in Hadd; rewrite Hadd. - apply add_1; auto with map. } - rewrite Hor in H; destruct H. - - - (* first case : x in m1 *) - exists (remove x m1); left. split; [|split]. - + (* add *) - change (Equal m1 (add x e (remove x m1))). - intro k. - rewrite add_o, remove_o. - destruct E.eq_dec as [He|Hne]; auto. - rewrite <- He; apply find_1; auto. - + (* disjoint *) - intros k (H1,H2). elim (Hdisj k). split; auto. - rewrite remove_in_iff in H1; destruct H1; auto. - + (* mapsto *) - intros k' e'. - rewrite Heq, 2 remove_mapsto_iff, Hor. - intuition. - elim (Hdisj x); split; [exists e|exists e']; auto. - apply MapsTo_1 with k'; auto with map. - - - (* second case : x in m2 *) - exists (remove x m2); right. split; [|split]. - + (* add *) - change (Equal m2 (add x e (remove x m2))). - intro k. - rewrite add_o, remove_o. - destruct E.eq_dec as [He|Hne]; auto. - rewrite <- He; apply find_1; auto. - + (* disjoint *) - intros k (H1,H2). elim (Hdisj k). split; auto. - rewrite remove_in_iff in H2; destruct H2; auto. - + (* mapsto *) - intros k' e'. - rewrite Heq, 2 remove_mapsto_iff, Hor. - intuition. - elim (Hdisj x); split; [exists e'|exists e]; auto. - apply MapsTo_1 with k'; auto with map. - Qed. - - Lemma Partition_fold : - forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)(f:key->elt->A->A), - Proper (E.eq==>eq==>eqA==>eqA) f -> - Diamond eqA f -> - forall m m1 m2 i, - Partition m m1 m2 -> - eqA (fold f m i) (fold f m1 (fold f m2 i)). - Proof. - intros A eqA st f Comp Tra. - induction m as [m Hm|m m' IH k e Hn Hadd] using map_induction. - - - intros m1 m2 i Hp. rewrite (fold_Empty (eqA:=eqA)); auto. - rewrite (Partition_Empty Hp) in Hm. destruct Hm. - rewrite 2 (fold_Empty (eqA:=eqA)); auto. reflexivity. - - - intros m1 m2 i Hp. - destruct (Partition_Add Hn Hadd Hp) as (m3,[(Hadd',Hp')|(Hadd',Hp')]). - + (* fst case: m3 is (k,e)::m1 *) - assert (~In k m3). - { contradict Hn. destruct Hn as (e',He'). - destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto. } - transitivity (f k e (fold f m i)). - apply fold_Add with (eqA:=eqA); auto. - symmetry. - transitivity (f k e (fold f m3 (fold f m2 i))). - apply fold_Add with (eqA:=eqA); auto. - apply Comp; auto with map. - symmetry; apply IH; auto. - + (* snd case: m3 is (k,e)::m2 *) - assert (~In k m3). - { contradict Hn. destruct Hn as (e',He'). - destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto. } - assert (~In k m1). - { contradict Hn. destruct Hn as (e',He'). - destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto. } - transitivity (f k e (fold f m i)). - apply fold_Add with (eqA:=eqA); auto. - transitivity (f k e (fold f m1 (fold f m3 i))). - apply Comp; auto using IH with map. - transitivity (fold f m1 (f k e (fold f m3 i))). - symmetry. - apply fold_commutes with (eqA:=eqA); auto. - apply fold_init with (eqA:=eqA); auto. - symmetry. - apply fold_Add with (eqA:=eqA); auto. - Qed. - - Lemma Partition_cardinal : forall m m1 m2, Partition m m1 m2 -> - cardinal m = cardinal m1 + cardinal m2. - Proof. - intros. - rewrite (cardinal_fold m), (cardinal_fold m1). - set (f:=fun (_:key)(_:elt)=>S). - setoid_replace (fold f m 0) with (fold f m1 (fold f m2 0)). - rewrite <- cardinal_fold. - apply fold_rel with (R:=fun u v => u = v + cardinal m2); simpl; auto. - apply Partition_fold with (eqA:=eq); compute; auto with map. congruence. - Qed. - - Lemma Partition_partition : forall m m1 m2, Partition m m1 m2 -> - let f := fun k (_:elt) => mem k m1 in - Equal m1 (fst (partition f m)) /\ Equal m2 (snd (partition f m)). - Proof. - intros m m1 m2 Hm f. - assert (Hf : Proper (E.eq==>eq==>eq) f). - intros k k' Hk e e' _; unfold f; rewrite Hk; auto. - set (m1':= fst (partition f m)). - set (m2':= snd (partition f m)). - split; rewrite Equal_mapsto_iff; intros k e. - rewrite (@partition_iff_1 f Hf m m1') by auto. - unfold f. - rewrite <- mem_in_iff. - destruct Hm as (Hm,Hm'). - rewrite Hm'. - intuition. - exists e; auto. - elim (Hm k); split; auto; exists e; auto. - rewrite (@partition_iff_2 f Hf m m2') by auto. - unfold f. - rewrite <- not_mem_in_iff. - destruct Hm as (Hm,Hm'). - rewrite Hm'. - intuition. - elim (Hm k); split; auto; exists e; auto. - elim H1; exists e; auto. - Qed. - - Lemma update_mapsto_iff : forall m m' k e, - MapsTo k e (update m m') <-> - (MapsTo k e m' \/ (MapsTo k e m /\ ~In k m')). - Proof. - unfold update. - intros m m'. - pattern m', (fold (@add _) m' m). apply fold_rec. - - - intros m0 Hm0 k e. - assert (~In k m0) by (intros (e0,He0); apply (Hm0 k e0); auto). - intuition. - elim (Hm0 k e); auto. - - - intros k e m0 m1 m2 _ Hn Hadd IH k' e'. - change (Equal m2 (add k e m1)) in Hadd. - rewrite Hadd, 2 add_mapsto_iff, IH, add_in_iff. clear IH. intuition. - Qed. - - Lemma update_dec : forall m m' k e, MapsTo k e (update m m') -> - { MapsTo k e m' } + { MapsTo k e m /\ ~In k m'}. - Proof. - intros m m' k e H. rewrite update_mapsto_iff in H. - destruct (In_dec m' k) as [H'|H']; [left|right]; intuition. - elim H'; exists e; auto. - Defined. - - Lemma update_in_iff : forall m m' k, - In k (update m m') <-> In k m \/ In k m'. - Proof. - intros m m' k. split. - intros (e,H); rewrite update_mapsto_iff in H. - destruct H; [right|left]; exists e; intuition. - destruct (In_dec m' k) as [H|H]. - destruct H as (e,H). intros _; exists e. - rewrite update_mapsto_iff; left; auto. - destruct 1 as [H'|H']; [|elim H; auto]. - destruct H' as (e,H'). exists e. - rewrite update_mapsto_iff; right; auto. - Qed. - - Lemma diff_mapsto_iff : forall m m' k e, - MapsTo k e (diff m m') <-> MapsTo k e m /\ ~In k m'. - Proof. - intros m m' k e. - unfold diff. - rewrite filter_iff. - intuition. - rewrite mem_1 in *; auto; discriminate. - intros ? ? Hk _ _ _; rewrite Hk; auto. - Qed. - - Lemma diff_in_iff : forall m m' k, - In k (diff m m') <-> In k m /\ ~In k m'. - Proof. - intros m m' k. split. - intros (e,H); rewrite diff_mapsto_iff in H. - destruct H; split; auto. exists e; auto. - intros ((e,H),H'); exists e; rewrite diff_mapsto_iff; auto. - Qed. - - Lemma restrict_mapsto_iff : forall m m' k e, - MapsTo k e (restrict m m') <-> MapsTo k e m /\ In k m'. - Proof. - intros m m' k e. - unfold restrict. - rewrite filter_iff. - intuition. - intros ? ? Hk _ _ _; rewrite Hk; auto. - Qed. - - Lemma restrict_in_iff : forall m m' k, - In k (restrict m m') <-> In k m /\ In k m'. - Proof. - intros m m' k. split. - intros (e,H); rewrite restrict_mapsto_iff in H. - destruct H; split; auto. exists e; auto. - intros ((e,H),H'); exists e; rewrite restrict_mapsto_iff; auto. - Qed. - - (** specialized versions analyzing only keys (resp. bindings) *) - - Definition filter_dom (f : key -> bool) := filter (fun k _ => f k). - Definition filter_range (f : elt -> bool) := filter (fun _ => f). - Definition for_all_dom (f : key -> bool) := for_all (fun k _ => f k). - Definition for_all_range (f : elt -> bool) := for_all (fun _ => f). - Definition exists_dom (f : key -> bool) := exists_ (fun k _ => f k). - Definition exists_range (f : elt -> bool) := exists_ (fun _ => f). - Definition partition_dom (f : key -> bool) := partition (fun k _ => f k). - Definition partition_range (f : elt -> bool) := partition (fun _ => f). - - End Elt. - - Instance cardinal_m {elt} : Proper (Equal ==> Logic.eq) (@cardinal elt). - Proof. intros m m'. apply Equal_cardinal. Qed. - - Instance Disjoint_m {elt} : Proper (Equal ==> Equal ==> iff) (@Disjoint elt). - Proof. - intros m1 m1' Hm1 m2 m2' Hm2. unfold Disjoint. split; intros. - rewrite <- Hm1, <- Hm2; auto. - rewrite Hm1, Hm2; auto. - Qed. - - Instance Partition_m {elt} : - Proper (Equal ==> Equal ==> Equal ==> iff) (@Partition elt). - Proof. - intros m1 m1' Hm1 m2 m2' Hm2 m3 m3' Hm3. unfold Partition. - rewrite <- Hm2, <- Hm3. - split; intros (H,H'); split; auto; intros. - rewrite <- Hm1, <- Hm2, <- Hm3; auto. - rewrite Hm1, Hm2, Hm3; auto. - Qed. - -(* - Instance filter_m0 {elt} (f:key->elt->bool) : - Proper (E.eq==>Logic.eq==>Logic.eq) f -> - Proper (Equal==>Equal) (filter f). - Proof. - intros Hf m m' Hm. apply Equal_mapsto_iff. intros. - now rewrite !filter_iff, Hm. - Qed. -*) - - Instance filter_m {elt} : - Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Equal) (@filter elt). - Proof. - intros f f' Hf m m' Hm. unfold filter. - rewrite 2 fold_spec_right. - set (l := rev (bindings m)). - set (l' := rev (bindings m')). - set (op := fun (f:key->elt->bool) => - uncurry (fun k e acc => if f k e then add k e acc else acc)). - change (Equal (fold_right (op f) empty l) (fold_right (op f') empty l')). - assert (Hl : NoDupA eq_key l). - { apply NoDupA_rev. apply eqk_equiv. apply bindings_spec2w. } - assert (Hl' : NoDupA eq_key l'). - { apply NoDupA_rev. apply eqk_equiv. apply bindings_spec2w. } - assert (H : PermutationA eq_key_elt l l'). - { apply NoDupA_equivlistA_PermutationA. - - apply eqke_equiv. - - now apply NoDupA_eqk_eqke. - - now apply NoDupA_eqk_eqke. - - intros (k,e); unfold l, l'. rewrite 2 InA_rev, 2 bindings_spec1. - rewrite Equal_mapsto_iff in Hm. apply Hm. } - destruct (PermutationA_decompose (eqke_equiv _) H) as (l0,(P,E)). - transitivity (fold_right (op f) empty l0). - - apply fold_right_equivlistA_restr2 - with (eqA:=Logic.eq)(R:=complement eq_key); auto with *. - + intros p p' <- acc acc' Hacc. - destruct p as (k,e); unfold op, uncurry; simpl. - destruct (f k e); now rewrite Hacc. - + intros (k,e) (k',e') z z'. - unfold op, complement, uncurry, eq_key; simpl. - intros Hk Hz. - destruct (f k e), (f k' e'); rewrite <- Hz; try reflexivity. - now apply add_add_2. - + apply NoDupA_incl with eq_key; trivial. intros; subst; now red. - + apply PermutationA_preserves_NoDupA with l; auto with *. - apply Permutation_PermutationA; auto with *. - apply NoDupA_incl with eq_key; trivial. intros; subst; now red. - + apply NoDupA_altdef. apply NoDupA_rev. apply eqk_equiv. - apply bindings_spec2w. - + apply PermutationA_equivlistA; auto with *. - apply Permutation_PermutationA; auto with *. - - clearbody l'. clear l Hl Hl' H P m m' Hm. - induction E. - + reflexivity. - + simpl. destruct x as (k,e), x' as (k',e'). - unfold op, uncurry at 1 3; simpl. - destruct H; simpl in *. rewrite <- (Hf _ _ H _ _ H0). - destruct (f k e); trivial. now f_equiv. - Qed. - - Instance for_all_m {elt} : - Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Logic.eq) (@for_all elt). - Proof. - intros f f' Hf m m' Hm. rewrite 2 for_all_filter. - (* Strange: we cannot rewrite Hm here... *) - f_equiv. f_equiv; trivial. - intros k k' Hk e e' He. f_equal. now apply Hf. - Qed. - - Instance exists_m {elt} : - Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Logic.eq) (@exists_ elt). - Proof. - intros f f' Hf m m' Hm. rewrite 2 exists_filter. - f_equal. now apply is_empty_m, filter_m. - Qed. - - Fact diamond_add {elt} : Diamond Equal (@add elt). - Proof. - intros k k' e e' a b b' Hk <- <-. now apply add_add_2. - Qed. - - Instance update_m {elt} : Proper (Equal ==> Equal ==> Equal) (@update elt). - Proof. - intros m1 m1' Hm1 m2 m2' Hm2. - unfold update. - apply fold_Proper; auto using diamond_add with *. - Qed. - - Instance restrict_m {elt} : Proper (Equal==>Equal==>Equal) (@restrict elt). - Proof. - intros m1 m1' Hm1 m2 m2' Hm2 y. - unfold restrict. - apply eq_option_alt. intros e. - rewrite !find_spec, !filter_iff, Hm1, Hm2. reflexivity. - clear. intros x x' Hx e e' He. now rewrite Hx. - clear. intros x x' Hx e e' He. now rewrite Hx. - Qed. - - Instance diff_m {elt} : Proper (Equal==>Equal==>Equal) (@diff elt). - Proof. - intros m1 m1' Hm1 m2 m2' Hm2 y. - unfold diff. - apply eq_option_alt. intros e. - rewrite !find_spec, !filter_iff, Hm1, Hm2. reflexivity. - clear. intros x x' Hx e e' He. now rewrite Hx. - clear. intros x x' Hx e e' He. now rewrite Hx. - Qed. - -End WProperties_fun. - -(** * Same Properties for self-contained weak maps and for full maps *) - -Module WProperties (M:WS) := WProperties_fun M.E M. -Module Properties := WProperties. - -(** * Properties specific to maps with ordered keys *) - -Module OrdProperties (M:S). - Module Import ME := OrderedTypeFacts M.E. - Module Import O:=KeyOrderedType M.E. - Module Import P:=Properties M. - Import M. - - Section Elt. - Variable elt:Type. - - Definition Above x (m:t elt) := forall y, In y m -> E.lt y x. - Definition Below x (m:t elt) := forall y, In y m -> E.lt x y. - - Section Bindings. - - Lemma sort_equivlistA_eqlistA : forall l l' : list (key*elt), - sort ltk l -> sort ltk l' -> equivlistA eqke l l' -> eqlistA eqke l l'. - Proof. - apply SortA_equivlistA_eqlistA; eauto with *. - Qed. - - Ltac klean := unfold O.eqke, O.ltk, RelCompFun in *; simpl in *. - Ltac keauto := klean; intuition; eauto. - - Definition gtb (p p':key*elt) := - match E.compare (fst p) (fst p') with Gt => true | _ => false end. - Definition leb p := fun p' => negb (gtb p p'). - - Definition bindings_lt p m := List.filter (gtb p) (bindings m). - Definition bindings_ge p m := List.filter (leb p) (bindings m). - - Lemma gtb_1 : forall p p', gtb p p' = true <-> ltk p' p. - Proof. - intros (x,e) (y,e'); unfold gtb; klean. - case E.compare_spec; intuition; try discriminate; ME.order. - Qed. - - Lemma leb_1 : forall p p', leb p p' = true <-> ~ltk p' p. - Proof. - intros (x,e) (y,e'); unfold leb, gtb; klean. - case E.compare_spec; intuition; try discriminate; ME.order. - Qed. - - Instance gtb_compat : forall p, Proper (eqke==>eq) (gtb p). - Proof. - red; intros (x,e) (a,e') (b,e'') H; red in H; simpl in *; destruct H. - generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e'')); - destruct (gtb (x,e) (a,e')); destruct (gtb (x,e) (b,e'')); klean; auto. - - intros. symmetry; rewrite H2. rewrite <-H, <-H1; auto. - - intros. rewrite H1. rewrite H, <- H2; auto. - Qed. - - Instance leb_compat : forall p, Proper (eqke==>eq) (leb p). - Proof. - intros x a b H. unfold leb; f_equal; apply gtb_compat; auto. - Qed. - - Hint Resolve gtb_compat leb_compat bindings_spec2 : map. - - Lemma bindings_split : forall p m, - bindings m = bindings_lt p m ++ bindings_ge p m. - Proof. - unfold bindings_lt, bindings_ge, leb; intros. - apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with *. - intros; destruct x; destruct y; destruct p. - rewrite gtb_1 in H; klean. - apply not_true_iff_false in H0. rewrite gtb_1 in H0. klean. ME.order. - Qed. - - Lemma bindings_Add : forall m m' x e, ~In x m -> Add x e m m' -> - eqlistA eqke (bindings m') - (bindings_lt (x,e) m ++ (x,e):: bindings_ge (x,e) m). - Proof. - intros; unfold bindings_lt, bindings_ge. - apply sort_equivlistA_eqlistA; auto with *. - - apply (@SortA_app _ eqke); auto with *. - + apply (@filter_sort _ eqke); auto with *; keauto. - + constructor; auto with map. - * apply (@filter_sort _ eqke); auto with *; keauto. - * rewrite (@InfA_alt _ eqke); auto with *; try (keauto; fail). - { intros. - rewrite filter_InA in H1; auto with *; destruct H1. - rewrite leb_1 in H2. - destruct y; klean. - rewrite <- bindings_mapsto_iff in H1. - assert (~E.eq x t0). - { contradict H. - exists e0; apply MapsTo_1 with t0; auto. - ME.order. } - ME.order. } - { apply (@filter_sort _ eqke); auto with *; keauto. } - + intros. - rewrite filter_InA in H1; auto with *; destruct H1. - rewrite gtb_1 in H3. - destruct y; destruct x0; klean. - inversion_clear H2. - * red in H4; klean; destruct H4; simpl in *. ME.order. - * rewrite filter_InA in H4; auto with *; destruct H4. - rewrite leb_1 in H4. klean; ME.order. - - intros (k,e'). - rewrite InA_app_iff, InA_cons, 2 filter_InA, - <-2 bindings_mapsto_iff, leb_1, gtb_1, - find_mapsto_iff, (H0 k), <- find_mapsto_iff, - add_mapsto_iff by (auto with * ). - change (eqke (k,e') (x,e)) with (E.eq k x /\ e' = e). - klean. - split. - + intros [(->,->)|(Hk,Hm)]. - * right; now left. - * destruct (lt_dec k x); intuition. - + intros [(Hm,LT)|[(->,->)|(Hm,EQ)]]. - * right; split; trivial; ME.order. - * now left. - * destruct (eq_dec x k) as [Hk|Hk]. - elim H. exists e'. now rewrite Hk. - right; auto. - Qed. - - Lemma bindings_Add_Above : forall m m' x e, - Above x m -> Add x e m m' -> - eqlistA eqke (bindings m') (bindings m ++ (x,e)::nil). - Proof. - intros. - apply sort_equivlistA_eqlistA; auto with *. - apply (@SortA_app _ eqke); auto with *. - intros. - inversion_clear H2. - destruct x0; destruct y. - rewrite <- bindings_mapsto_iff in H1. - destruct H3; klean. - rewrite H2. - apply H; firstorder. - inversion H3. - red; intros a; destruct a. - rewrite InA_app_iff, InA_cons, InA_nil, <- 2 bindings_mapsto_iff, - find_mapsto_iff, (H0 t0), <- find_mapsto_iff, - add_mapsto_iff by (auto with *). - change (eqke (t0,e0) (x,e)) with (E.eq t0 x /\ e0 = e). - intuition. - destruct (E.eq_dec x t0) as [Heq|Hneq]; auto. - exfalso. - assert (In t0 m) by (exists e0; auto). - generalize (H t0 H1). - ME.order. - Qed. - - Lemma bindings_Add_Below : forall m m' x e, - Below x m -> Add x e m m' -> - eqlistA eqke (bindings m') ((x,e)::bindings m). - Proof. - intros. - apply sort_equivlistA_eqlistA; auto with *. - change (sort ltk (((x,e)::nil) ++ bindings m)). - apply (@SortA_app _ eqke); auto with *. - intros. - inversion_clear H1. - destruct y; destruct x0. - rewrite <- bindings_mapsto_iff in H2. - destruct H3; klean. - rewrite H1. - apply H; firstorder. - inversion H3. - red; intros a; destruct a. - rewrite InA_cons, <- 2 bindings_mapsto_iff, - find_mapsto_iff, (H0 t0), <- find_mapsto_iff, - add_mapsto_iff by (auto with * ). - change (eqke (t0,e0) (x,e)) with (E.eq t0 x /\ e0 = e). - intuition. - destruct (E.eq_dec x t0) as [Heq|Hneq]; auto. - exfalso. - assert (In t0 m) by (exists e0; auto). - generalize (H t0 H1). - ME.order. - Qed. - - Lemma bindings_Equal_eqlistA : forall (m m': t elt), - Equal m m' -> eqlistA eqke (bindings m) (bindings m'). - Proof. - intros. - apply sort_equivlistA_eqlistA; auto with *. - red; intros. - destruct x; do 2 rewrite <- bindings_mapsto_iff. - do 2 rewrite find_mapsto_iff; rewrite H; split; auto. - Qed. - - End Bindings. - - Section Min_Max_Elt. - - (** We emulate two [max_elt] and [min_elt] functions. *) - - Fixpoint max_elt_aux (l:list (key*elt)) := match l with - | nil => None - | (x,e)::nil => Some (x,e) - | (x,e)::l => max_elt_aux l - end. - Definition max_elt m := max_elt_aux (bindings m). - - Lemma max_elt_Above : - forall m x e, max_elt m = Some (x,e) -> Above x (remove x m). - Proof. - red; intros. - rewrite remove_in_iff in H0. - destruct H0. - rewrite bindings_in_iff in H1. - destruct H1. - unfold max_elt in *. - generalize (bindings_spec2 m). - revert x e H y x0 H0 H1. - induction (bindings m). - simpl; intros; try discriminate. - intros. - destruct a; destruct l; simpl in *. - injection H; clear H; intros; subst. - inversion_clear H1. - red in H; simpl in *; intuition. - now elim H0. - inversion H. - change (max_elt_aux (p::l) = Some (x,e)) in H. - generalize (IHl x e H); clear IHl; intros IHl. - inversion_clear H1; [ | inversion_clear H2; eauto ]. - red in H3; simpl in H3; destruct H3. - destruct p as (p1,p2). - destruct (E.eq_dec p1 x) as [Heq|Hneq]. - rewrite <- Heq; auto. - inversion_clear H2. - inversion_clear H5. - red in H2; simpl in H2; ME.order. - transitivity p1; auto. - inversion_clear H2. - inversion_clear H5. - red in H2; simpl in H2; ME.order. - eapply IHl; eauto with *. - econstructor; eauto. - red; eauto with *. - inversion H2; auto. - Qed. - - Lemma max_elt_MapsTo : - forall m x e, max_elt m = Some (x,e) -> MapsTo x e m. - Proof. - intros. - unfold max_elt in *. - rewrite bindings_mapsto_iff. - induction (bindings m). - simpl; try discriminate. - destruct a; destruct l; simpl in *. - injection H; intros; subst; constructor; red; auto with *. - constructor 2; auto. - Qed. - - Lemma max_elt_Empty : - forall m, max_elt m = None -> Empty m. - Proof. - intros. - unfold max_elt in *. - rewrite bindings_Empty. - induction (bindings m); auto. - destruct a; destruct l; simpl in *; try discriminate. - assert (H':=IHl H); discriminate. - Qed. - - Definition min_elt m : option (key*elt) := match bindings m with - | nil => None - | (x,e)::_ => Some (x,e) - end. - - Lemma min_elt_Below : - forall m x e, min_elt m = Some (x,e) -> Below x (remove x m). - Proof. - unfold min_elt, Below; intros. - rewrite remove_in_iff in H0; destruct H0. - rewrite bindings_in_iff in H1. - destruct H1. - generalize (bindings_spec2 m). - destruct (bindings m). - try discriminate. - destruct p; injection H; intros; subst. - inversion_clear H1. - red in H2; destruct H2; simpl in *; ME.order. - inversion_clear H4. - rewrite (@InfA_alt _ eqke) in H3; eauto with *. - apply (H3 (y,x0)); auto. - Qed. - - Lemma min_elt_MapsTo : - forall m x e, min_elt m = Some (x,e) -> MapsTo x e m. - Proof. - intros. - unfold min_elt in *. - rewrite bindings_mapsto_iff. - destruct (bindings m). - simpl; try discriminate. - destruct p; simpl in *. - injection H; intros; subst; constructor; red; auto with *. - Qed. - - Lemma min_elt_Empty : - forall m, min_elt m = None -> Empty m. - Proof. - intros. - unfold min_elt in *. - rewrite bindings_Empty. - destruct (bindings m); auto. - destruct p; simpl in *; discriminate. - Qed. - - End Min_Max_Elt. - - Section Induction_Principles. - - Lemma map_induction_max : - forall P : t elt -> Type, - (forall m, Empty m -> P m) -> - (forall m m', P m -> forall x e, Above x m -> Add x e m m' -> P m') -> - forall m, P m. - Proof. - intros; remember (cardinal m) as n; revert m Heqn; induction n; intros. - apply X; apply cardinal_inv_1; auto. - - case_eq (max_elt m); intros. - destruct p. - assert (Add k e (remove k m) m). - { apply max_elt_MapsTo, find_spec, add_id in H. - unfold Add. symmetry. now rewrite add_remove_1. } - apply X0 with (remove k m) k e; auto with map. - apply IHn. - assert (S n = S (cardinal (remove k m))). - { rewrite Heqn. - eapply cardinal_S; eauto with map. } - inversion H1; auto. - eapply max_elt_Above; eauto. - - apply X; apply max_elt_Empty; auto. - Qed. - - Lemma map_induction_min : - forall P : t elt -> Type, - (forall m, Empty m -> P m) -> - (forall m m', P m -> forall x e, Below x m -> Add x e m m' -> P m') -> - forall m, P m. - Proof. - intros; remember (cardinal m) as n; revert m Heqn; induction n; intros. - apply X; apply cardinal_inv_1; auto. - - case_eq (min_elt m); intros. - destruct p. - assert (Add k e (remove k m) m). - { apply min_elt_MapsTo, find_spec, add_id in H. - unfold Add. symmetry. now rewrite add_remove_1. } - apply X0 with (remove k m) k e; auto. - apply IHn. - assert (S n = S (cardinal (remove k m))). - { rewrite Heqn. - eapply cardinal_S; eauto with map. } - inversion H1; auto. - eapply min_elt_Below; eauto. - - apply X; apply min_elt_Empty; auto. - Qed. - - End Induction_Principles. - - Section Fold_properties. - - (** The following lemma has already been proved on Weak Maps, - but with one additionnal hypothesis (some [transpose] fact). *) - - Lemma fold_Equal : forall m1 m2 (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA) - (f:key->elt->A->A)(i:A), - Proper (E.eq==>eq==>eqA==>eqA) f -> - Equal m1 m2 -> - eqA (fold f m1 i) (fold f m2 i). - Proof. - intros m1 m2 A eqA st f i Hf Heq. - rewrite 2 fold_spec_right. - apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto. - intros (k,e) (k',e') (Hk,He) a a' Ha; simpl in *; apply Hf; auto. - apply eqlistA_rev. apply bindings_Equal_eqlistA. auto. - Qed. - - Lemma fold_Add_Above : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA) - (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f), - Above x m1 -> Add x e m1 m2 -> - eqA (fold f m2 i) (f x e (fold f m1 i)). - Proof. - intros. rewrite 2 fold_spec_right. set (f':=uncurry f). - transitivity (fold_right f' i (rev (bindings m1 ++ (x,e)::nil))). - apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto. - intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *. apply P; auto. - apply eqlistA_rev. - apply bindings_Add_Above; auto. - rewrite distr_rev; simpl. - reflexivity. - Qed. - - Lemma fold_Add_Below : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA) - (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f), - Below x m1 -> Add x e m1 m2 -> - eqA (fold f m2 i) (fold f m1 (f x e i)). - Proof. - intros. rewrite 2 fold_spec_right. set (f':=uncurry f). - transitivity (fold_right f' i (rev (((x,e)::nil)++bindings m1))). - apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto. - intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *; apply P; auto. - apply eqlistA_rev. - simpl; apply bindings_Add_Below; auto. - rewrite distr_rev; simpl. - rewrite fold_right_app. - reflexivity. - Qed. - - End Fold_properties. - - End Elt. - -End OrdProperties. |