summaryrefslogtreecommitdiff
path: root/theories/Logic
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic')
-rw-r--r--theories/Logic/Berardi.v14
-rw-r--r--theories/Logic/ChoiceFacts.v6
-rw-r--r--theories/Logic/Classical.v2
-rw-r--r--theories/Logic/ClassicalChoice.v2
-rw-r--r--theories/Logic/ClassicalDescription.v4
-rw-r--r--theories/Logic/ClassicalEpsilon.v2
-rw-r--r--theories/Logic/ClassicalFacts.v38
-rw-r--r--theories/Logic/ClassicalUniqueChoice.v2
-rw-r--r--theories/Logic/Classical_Pred_Set.v2
-rw-r--r--theories/Logic/Classical_Pred_Type.v10
-rw-r--r--theories/Logic/Classical_Prop.v10
-rw-r--r--theories/Logic/Classical_Type.v2
-rw-r--r--theories/Logic/ConstructiveEpsilon.v6
-rw-r--r--theories/Logic/Decidable.v2
-rw-r--r--theories/Logic/Description.v2
-rw-r--r--theories/Logic/Diaconescu.v16
-rw-r--r--theories/Logic/Epsilon.v2
-rw-r--r--theories/Logic/Eqdep.v2
-rw-r--r--theories/Logic/EqdepFacts.v14
-rw-r--r--theories/Logic/Eqdep_dec.v32
-rw-r--r--theories/Logic/ExtensionalityFacts.v2
-rw-r--r--theories/Logic/FunctionalExtensionality.v2
-rw-r--r--theories/Logic/Hurkens.v6
-rw-r--r--theories/Logic/IndefiniteDescription.v2
-rw-r--r--theories/Logic/JMeq.v2
-rw-r--r--theories/Logic/ProofIrrelevance.v2
-rw-r--r--theories/Logic/ProofIrrelevanceFacts.v4
-rw-r--r--theories/Logic/RelationalChoice.v2
-rw-r--r--theories/Logic/SetIsType.v2
29 files changed, 97 insertions, 97 deletions
diff --git a/theories/Logic/Berardi.v b/theories/Logic/Berardi.v
index 2b388687..38377573 100644
--- a/theories/Logic/Berardi.v
+++ b/theories/Logic/Berardi.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -45,7 +45,7 @@ Lemma AC_IF :
(B -> Q e1) -> (~ B -> Q e2) -> Q (IFProp B e1 e2).
Proof.
intros P B e1 e2 Q p1 p2.
-unfold IFProp in |- *.
+unfold IFProp.
case (EM B); assumption.
Qed.
@@ -76,7 +76,7 @@ Record retract_cond : Prop :=
Lemma AC : forall r:retract_cond, retract -> forall a:A, j2 r (i2 r a) = a.
Proof.
intros r.
-case r; simpl in |- *.
+case r; simpl.
trivial.
Qed.
@@ -113,7 +113,7 @@ Lemma retract_pow_U_U : retract (pow U) U.
Proof.
exists g f.
intro a.
-unfold f, g in |- *; simpl in |- *.
+unfold f, g; simpl.
apply AC.
exists (fun x:pow U => x) (fun x:pow U => x).
trivial.
@@ -130,8 +130,8 @@ Definition R : U := g (fun u:U => Not_b (u U u)).
Lemma not_has_fixpoint : R R = Not_b (R R).
Proof.
-unfold R at 1 in |- *.
-unfold g in |- *.
+unfold R at 1.
+unfold g.
rewrite AC with (r := L1 U U) (a := fun u:U => Not_b (u U u)).
trivial.
exists (fun x:pow U => x) (fun x:pow U => x); trivial.
@@ -141,7 +141,7 @@ Qed.
Theorem classical_proof_irrelevence : T = F.
Proof.
generalize not_has_fixpoint.
-unfold Not_b in |- *.
+unfold Not_b.
apply AC_IF.
intros is_true is_false.
elim is_true; elim is_false; trivial.
diff --git a/theories/Logic/ChoiceFacts.v b/theories/Logic/ChoiceFacts.v
index fb7898c6..1a32d518 100644
--- a/theories/Logic/ChoiceFacts.v
+++ b/theories/Logic/ChoiceFacts.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -344,7 +344,7 @@ Lemma rel_choice_and_proof_irrel_imp_guarded_rel_choice :
RelationalChoice -> ProofIrrelevance -> GuardedRelationalChoice.
Proof.
intros rel_choice proof_irrel.
- red in |- *; intros A B P R H.
+ red; intros A B P R H.
destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as (R',(HR'R,H0)).
intros (x,HPx).
destruct (H x HPx) as (y,HRxy).
@@ -580,7 +580,7 @@ Lemma classical_denumerable_description_imp_fun_choice :
(forall x y, decidable (R x y)) -> FunctionalChoice_on_rel R.
Proof.
intros A Descr.
- red in |- *; intros R Rdec H.
+ red; intros R Rdec H.
set (R':= fun x y => R x y /\ forall y', R x y' -> y <= y').
destruct (Descr R') as (f,Hf).
intro x.
diff --git a/theories/Logic/Classical.v b/theories/Logic/Classical.v
index 9362a11f..d25e0e21 100644
--- a/theories/Logic/Classical.v
+++ b/theories/Logic/Classical.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/ClassicalChoice.v b/theories/Logic/ClassicalChoice.v
index 6bc0be1d..479056c9 100644
--- a/theories/Logic/ClassicalChoice.v
+++ b/theories/Logic/ClassicalChoice.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/ClassicalDescription.v b/theories/Logic/ClassicalDescription.v
index d35ed138..2fd6e68e 100644
--- a/theories/Logic/ClassicalDescription.v
+++ b/theories/Logic/ClassicalDescription.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -20,7 +20,7 @@ Require Export Classical. (* Axiomatize classical reasoning *)
Require Export Description. (* Axiomatize constructive form of Church's iota *)
Require Import ChoiceFacts.
-Notation Local inhabited A := A (only parsing).
+Local Notation inhabited A := A (only parsing).
(** The idea for the following proof comes from [ChicliPottierSimpson02] *)
diff --git a/theories/Logic/ClassicalEpsilon.v b/theories/Logic/ClassicalEpsilon.v
index ae32b127..7ab991f8 100644
--- a/theories/Logic/ClassicalEpsilon.v
+++ b/theories/Logic/ClassicalEpsilon.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/ClassicalFacts.v b/theories/Logic/ClassicalFacts.v
index bcec657a..34ae1cd5 100644
--- a/theories/Logic/ClassicalFacts.v
+++ b/theories/Logic/ClassicalFacts.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -117,7 +117,7 @@ Qed.
*)
-Notation Local inhabited A := A (only parsing).
+Local Notation inhabited A := A (only parsing).
Lemma prop_ext_A_eq_A_imp_A :
prop_extensionality -> forall A:Prop, inhabited A -> (A -> A) = A.
@@ -148,7 +148,7 @@ Proof.
case (prop_ext_retract_A_A_imp_A Ext A a); intros g1 g2 g1_o_g2.
exists (fun f => (fun x:A => f (g1 x x)) (g2 (fun x => f (g1 x x)))).
intro f.
- pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1 in |- *.
+ pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1.
rewrite (g1_o_g2 (fun x:A => f (g1 x x))).
reflexivity.
Qed.
@@ -191,13 +191,13 @@ Section Proof_irrelevance_gen.
intros Ext Ind.
case (ext_prop_fixpoint Ext bool true); intros G Gfix.
set (neg := fun b:bool => bool_elim bool false true b).
- generalize (refl_equal (G neg)).
- pattern (G neg) at 1 in |- *.
+ generalize (eq_refl (G neg)).
+ pattern (G neg) at 1.
apply Ind with (b := G neg); intro Heq.
rewrite (bool_elim_redl bool false true).
- change (true = neg true) in |- *; rewrite Heq; apply Gfix.
+ change (true = neg true); rewrite Heq; apply Gfix.
rewrite (bool_elim_redr bool false true).
- change (neg false = false) in |- *; rewrite Heq; symmetry in |- *;
+ change (neg false = false); rewrite Heq; symmetry ;
apply Gfix.
Qed.
@@ -207,9 +207,9 @@ Section Proof_irrelevance_gen.
intros Ext Ind A a1 a2.
set (f := fun b:bool => bool_elim A a1 a2 b).
rewrite (bool_elim_redl A a1 a2).
- change (f true = a2) in |- *.
+ change (f true = a2).
rewrite (bool_elim_redr A a1 a2).
- change (f true = f false) in |- *.
+ change (f true = f false).
rewrite (aux Ext Ind).
reflexivity.
Qed.
@@ -228,9 +228,9 @@ Section Proof_irrelevance_Prop_Ext_CC.
Definition FalseP : BoolP := fun C c1 c2 => c2.
Definition BoolP_elim C c1 c2 (b:BoolP) := b C c1 c2.
Definition BoolP_elim_redl (C:Prop) (c1 c2:C) :
- c1 = BoolP_elim C c1 c2 TrueP := refl_equal c1.
+ c1 = BoolP_elim C c1 c2 TrueP := eq_refl c1.
Definition BoolP_elim_redr (C:Prop) (c1 c2:C) :
- c2 = BoolP_elim C c1 c2 FalseP := refl_equal c2.
+ c2 = BoolP_elim C c1 c2 FalseP := eq_refl c2.
Definition BoolP_dep_induction :=
forall P:BoolP -> Prop, P TrueP -> P FalseP -> forall b:BoolP, P b.
@@ -263,9 +263,9 @@ Section Proof_irrelevance_CIC.
| trueP : boolP
| falseP : boolP.
Definition boolP_elim_redl (C:Prop) (c1 c2:C) :
- c1 = boolP_ind C c1 c2 trueP := refl_equal c1.
+ c1 = boolP_ind C c1 c2 trueP := eq_refl c1.
Definition boolP_elim_redr (C:Prop) (c1 c2:C) :
- c2 = boolP_ind C c1 c2 falseP := refl_equal c2.
+ c2 = boolP_ind C c1 c2 falseP := eq_refl c2.
Scheme boolP_indd := Induction for boolP Sort Prop.
Lemma ext_prop_dep_proof_irrel_cic : prop_extensionality -> proof_irrelevance.
@@ -344,8 +344,8 @@ Section Proof_irrelevance_EM_CC.
Lemma p2p1 : forall A:Prop, A -> b2p (p2b A).
Proof.
- unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
- unfold b2p in |- *; intros.
+ unfold p2b; intro A; apply or_dep_elim with (b := em A);
+ unfold b2p; intros.
apply (or_elim_redl A (~ A) B (fun _ => b1) (fun _ => b2)).
destruct (b H).
Qed.
@@ -353,8 +353,8 @@ Section Proof_irrelevance_EM_CC.
Lemma p2p2 : b1 <> b2 -> forall A:Prop, b2p (p2b A) -> A.
Proof.
intro not_eq_b1_b2.
- unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
- unfold b2p in |- *; intros.
+ unfold p2b; intro A; apply or_dep_elim with (b := em A);
+ unfold b2p; intros.
assumption.
destruct not_eq_b1_b2.
rewrite <- (or_elim_redr A (~ A) B (fun _ => b1) (fun _ => b2)) in H.
@@ -392,9 +392,9 @@ Section Proof_irrelevance_CCI.
Hypothesis em : forall A:Prop, A \/ ~ A.
Definition or_elim_redl (A B C:Prop) (f:A -> C) (g:B -> C)
- (a:A) : f a = or_ind f g (or_introl B a) := refl_equal (f a).
+ (a:A) : f a = or_ind f g (or_introl B a) := eq_refl (f a).
Definition or_elim_redr (A B C:Prop) (f:A -> C) (g:B -> C)
- (b:B) : g b = or_ind f g (or_intror A b) := refl_equal (g b).
+ (b:B) : g b = or_ind f g (or_intror A b) := eq_refl (g b).
Scheme or_indd := Induction for or Sort Prop.
Theorem proof_irrelevance_cci : forall (B:Prop) (b1 b2:B), b1 = b2.
diff --git a/theories/Logic/ClassicalUniqueChoice.v b/theories/Logic/ClassicalUniqueChoice.v
index ebb73b19..4a4fc23f 100644
--- a/theories/Logic/ClassicalUniqueChoice.v
+++ b/theories/Logic/ClassicalUniqueChoice.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/Classical_Pred_Set.v b/theories/Logic/Classical_Pred_Set.v
index 7d8bde71..cda9d22c 100644
--- a/theories/Logic/Classical_Pred_Set.v
+++ b/theories/Logic/Classical_Pred_Set.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/Classical_Pred_Type.v b/theories/Logic/Classical_Pred_Type.v
index 9d57fe88..7e1a4096 100644
--- a/theories/Logic/Classical_Pred_Type.v
+++ b/theories/Logic/Classical_Pred_Type.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -42,7 +42,7 @@ Qed.
Lemma not_ex_all_not :
forall P:U -> Prop, ~ (exists n : U, P n) -> forall n:U, ~ P n.
Proof. (* Intuitionistic *)
-unfold not in |- *; intros P notex n abs.
+unfold not; intros P notex n abs.
apply notex.
exists n; trivial.
Qed.
@@ -52,20 +52,20 @@ Lemma not_ex_not_all :
Proof.
intros P H n.
apply NNPP.
-red in |- *; intro K; apply H; exists n; trivial.
+red; intro K; apply H; exists n; trivial.
Qed.
Lemma ex_not_not_all :
forall P:U -> Prop, (exists n : U, ~ P n) -> ~ (forall n:U, P n).
Proof. (* Intuitionistic *)
-unfold not in |- *; intros P exnot allP.
+unfold not; intros P exnot allP.
elim exnot; auto.
Qed.
Lemma all_not_not_ex :
forall P:U -> Prop, (forall n:U, ~ P n) -> ~ (exists n : U, P n).
Proof. (* Intuitionistic *)
-unfold not in |- *; intros P allnot exP; elim exP; intros n p.
+unfold not; intros P allnot exP; elim exP; intros n p.
apply allnot with n; auto.
Qed.
diff --git a/theories/Logic/Classical_Prop.v b/theories/Logic/Classical_Prop.v
index d2b35da2..1f6b05f5 100644
--- a/theories/Logic/Classical_Prop.v
+++ b/theories/Logic/Classical_Prop.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -20,7 +20,7 @@ Axiom classic : forall P:Prop, P \/ ~ P.
Lemma NNPP : forall p:Prop, ~ ~ p -> p.
Proof.
-unfold not in |- *; intros; elim (classic p); auto.
+unfold not; intros; elim (classic p); auto.
intro NP; elim (H NP).
Qed.
@@ -35,7 +35,7 @@ Qed.
Lemma not_imply_elim : forall P Q:Prop, ~ (P -> Q) -> P.
Proof.
-intros; apply NNPP; red in |- *.
+intros; apply NNPP; red.
intro; apply H; intro; absurd P; trivial.
Qed.
@@ -68,7 +68,7 @@ Qed.
Lemma or_not_and : forall P Q:Prop, ~ P \/ ~ Q -> ~ (P /\ Q).
Proof.
-simple induction 1; red in |- *; simple induction 2; auto.
+simple induction 1; red; simple induction 2; auto.
Qed.
Lemma not_or_and : forall P Q:Prop, ~ (P \/ Q) -> ~ P /\ ~ Q.
@@ -112,7 +112,7 @@ Module Eq_rect_eq.
Lemma eq_rect_eq :
forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
Proof.
-intros; rewrite proof_irrelevance with (p1:=h) (p2:=refl_equal p); reflexivity.
+intros; rewrite proof_irrelevance with (p1:=h) (p2:=eq_refl p); reflexivity.
Qed.
End Eq_rect_eq.
diff --git a/theories/Logic/Classical_Type.v b/theories/Logic/Classical_Type.v
index 9b28a6ab..86fdd69f 100644
--- a/theories/Logic/Classical_Type.v
+++ b/theories/Logic/Classical_Type.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/ConstructiveEpsilon.v b/theories/Logic/ConstructiveEpsilon.v
index 33550389..89d3eebc 100644
--- a/theories/Logic/ConstructiveEpsilon.v
+++ b/theories/Logic/ConstructiveEpsilon.v
@@ -1,12 +1,12 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ConstructiveEpsilon.v 14628 2011-11-03 23:22:45Z herbelin $ i*)
+(*i $Id: ConstructiveEpsilon.v 15714 2012-08-08 18:54:37Z herbelin $ i*)
(** This provides with a proof of the constructive form of definite
and indefinite descriptions for Sigma^0_1-formulas (hereafter called
@@ -112,7 +112,7 @@ of our searching algorithm. *)
Let R (x y : nat) : Prop := x = S y /\ ~ P y.
-Notation Local acc x := (Acc R x).
+Local Notation acc x := (Acc R x).
Lemma P_implies_acc : forall x : nat, P x -> acc x.
Proof.
diff --git a/theories/Logic/Decidable.v b/theories/Logic/Decidable.v
index fec7904e..aaf1813b 100644
--- a/theories/Logic/Decidable.v
+++ b/theories/Logic/Decidable.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/Description.v b/theories/Logic/Description.v
index b74ebcc8..3e5d4ef0 100644
--- a/theories/Logic/Description.v
+++ b/theories/Logic/Description.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/Diaconescu.v b/theories/Logic/Diaconescu.v
index 8569e55e..87b27987 100644
--- a/theories/Logic/Diaconescu.v
+++ b/theories/Logic/Diaconescu.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -61,7 +61,7 @@ Variable pred_extensionality : PredicateExtensionality.
Lemma prop_ext : forall A B:Prop, (A <-> B) -> A = B.
Proof.
intros A B H.
- change ((fun _ => A) true = (fun _ => B) true) in |- *.
+ change ((fun _ => A) true = (fun _ => B) true).
rewrite
pred_extensionality with (P := fun _:bool => A) (Q := fun _:bool => B).
reflexivity.
@@ -134,8 +134,8 @@ right.
intro HP.
assert (Hequiv : forall b:bool, class_of_true b <-> class_of_false b).
intro b; split.
-unfold class_of_false in |- *; right; assumption.
-unfold class_of_true in |- *; right; assumption.
+unfold class_of_false; right; assumption.
+unfold class_of_true; right; assumption.
assert (Heq : class_of_true = class_of_false).
apply pred_extensionality with (1 := Hequiv).
apply diff_true_false.
@@ -188,8 +188,8 @@ Lemma projT1_injective : a1=a2 -> a1'=a2'.
Proof.
intro Heq ; unfold a1', a2', A'.
rewrite Heq.
- replace (or_introl (a2=a2) (refl_equal a2))
- with (or_intror (a2=a2) (refl_equal a2)).
+ replace (or_introl (a2=a2) (eq_refl a2))
+ with (or_intror (a2=a2) (eq_refl a2)).
reflexivity.
apply proof_irrelevance.
Qed.
@@ -265,7 +265,7 @@ End ProofIrrel_RelChoice_imp_EqEM.
(** Proof sketch from Bell [Bell93] (with thanks to P. Castéran) *)
-Notation Local inhabited A := A (only parsing).
+Local Notation inhabited A := A (only parsing).
Section ExtensionalEpsilon_imp_EM.
@@ -279,7 +279,7 @@ Hypothesis epsilon_extensionality :
forall (A:Type) (i:inhabited A) (P Q:A->Prop),
(forall a, P a <-> Q a) -> epsilon A i P = epsilon A i Q.
-Notation Local eps := (epsilon bool true) (only parsing).
+Local Notation eps := (epsilon bool true) (only parsing).
Theorem extensional_epsilon_imp_EM : forall P:Prop, P \/ ~ P.
Proof.
diff --git a/theories/Logic/Epsilon.v b/theories/Logic/Epsilon.v
index cb8f8a73..da3e5b08 100644
--- a/theories/Logic/Epsilon.v
+++ b/theories/Logic/Epsilon.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/Eqdep.v b/theories/Logic/Eqdep.v
index b8e99036..6841334f 100644
--- a/theories/Logic/Eqdep.v
+++ b/theories/Logic/Eqdep.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v
index d84cd824..a22f286e 100644
--- a/theories/Logic/EqdepFacts.v
+++ b/theories/Logic/EqdepFacts.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -101,7 +101,7 @@ Section Dependent_Equality.
forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep1 p x q y.
Proof.
destruct 1.
- apply eq_dep1_intro with (refl_equal p).
+ apply eq_dep1_intro with (eq_refl p).
simpl; trivial.
Qed.
@@ -121,7 +121,7 @@ Proof.
apply eq_dep_intro.
Qed.
-Notation eq_sigS_eq_dep := eq_sigT_eq_dep (only parsing). (* Compatibility *)
+Notation eq_sigS_eq_dep := eq_sigT_eq_dep (compat "8.2"). (* Compatibility *)
Lemma eq_dep_eq_sigT :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
@@ -250,12 +250,12 @@ Section Equivalences.
(** Uniqueness of Reflexive Identity Proofs *)
Definition UIP_refl_ :=
- forall (x:U) (p:x = x), p = refl_equal x.
+ forall (x:U) (p:x = x), p = eq_refl x.
(** Streicher's axiom K *)
Definition Streicher_K_ :=
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
(** Injectivity of Dependent Equality is a consequence of *)
(** Invariance by Substitution of Reflexive Equality Proof *)
@@ -389,14 +389,14 @@ Proof (eq_dep_eq__UIP U eq_dep_eq).
(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)
-Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x.
+Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x.
Proof (UIP__UIP_refl U UIP).
(** Streicher's axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs *)
Lemma Streicher_K :
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof (UIP_refl__Streicher_K U UIP_refl).
End Axioms.
diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v
index 59088aa7..3a6f6a23 100644
--- a/theories/Logic/Eqdep_dec.v
+++ b/theories/Logic/Eqdep_dec.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -9,7 +9,7 @@
(* Created by Bruno Barras, Jan 1998 *)
(* Made a module instance for EqdepFacts by Hugo Herbelin, Mar 2006 *)
-(** We prove that there is only one proof of [x=x], i.e [refl_equal x].
+(** We prove that there is only one proof of [x=x], i.e [eq_refl x].
This holds if the equality upon the set of [x] is decidable.
A corollary of this theorem is the equality of the right projections
of two equal dependent pairs.
@@ -43,7 +43,7 @@ Section EqdepDec.
Let comp (x y y':A) (eq1:x = y) (eq2:x = y') : y = y' :=
eq_ind _ (fun a => a = y') eq2 _ eq1.
- Remark trans_sym_eq : forall (x y:A) (u:x = y), comp u u = refl_equal y.
+ Remark trans_sym_eq : forall (x y:A) (u:x = y), comp u u = eq_refl y.
Proof.
intros.
case u; trivial.
@@ -61,7 +61,7 @@ Section EqdepDec.
Let nu_constant : forall (y:A) (u v:x = y), nu u = nu v.
intros.
- unfold nu in |- *.
+ unfold nu.
case (eq_dec x y); intros.
reflexivity.
@@ -69,13 +69,13 @@ Section EqdepDec.
Qed.
- Let nu_inv (y:A) (v:x = y) : x = y := comp (nu (refl_equal x)) v.
+ Let nu_inv (y:A) (v:x = y) : x = y := comp (nu (eq_refl x)) v.
Remark nu_left_inv : forall (y:A) (u:x = y), nu_inv (nu u) = u.
Proof.
intros.
- case u; unfold nu_inv in |- *.
+ case u; unfold nu_inv.
apply trans_sym_eq.
Qed.
@@ -90,10 +90,10 @@ Section EqdepDec.
Qed.
Theorem K_dec :
- forall P:x = x -> Prop, P (refl_equal x) -> forall p:x = x, P p.
+ forall P:x = x -> Prop, P (eq_refl x) -> forall p:x = x, P p.
Proof.
intros.
- elim eq_proofs_unicity with x (refl_equal x) p.
+ elim eq_proofs_unicity with x (eq_refl x) p.
trivial.
Qed.
@@ -115,7 +115,7 @@ Section EqdepDec.
Proof.
intros.
cut (proj (ex_intro P x y) y = proj (ex_intro P x y') y).
- simpl in |- *.
+ simpl.
case (eq_dec x x).
intro e.
elim e using K_dec; trivial.
@@ -135,7 +135,7 @@ Require Import EqdepFacts.
Theorem K_dec_type :
forall A:Type,
(forall x y:A, {x = y} + {x <> y}) ->
- forall (x:A) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof.
intros A eq_dec x P H p.
elim p using K_dec; intros.
@@ -146,7 +146,7 @@ Qed.
Theorem K_dec_set :
forall A:Set,
(forall x y:A, {x = y} + {x <> y}) ->
- forall (x:A) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof fun A => K_dec_type (A:=A).
(** We deduce the [eq_rect_eq] axiom for (decidable) types *)
@@ -212,13 +212,13 @@ Module DecidableEqDep (M:DecidableType).
(** Uniqueness of Reflexive Identity Proofs *)
- Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x.
+ Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x.
Proof (UIP__UIP_refl U UIP).
(** Streicher's axiom K *)
Lemma Streicher_K :
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof (K_dec_type eq_dec).
(** Injectivity of equality on dependent pairs in [Type] *)
@@ -281,13 +281,13 @@ Module DecidableEqDepSet (M:DecidableSet).
(** Uniqueness of Reflexive Identity Proofs *)
- Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x.
+ Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x.
Proof N.UIP_refl.
(** Streicher's axiom K *)
Lemma Streicher_K :
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof N.Streicher_K.
(** Proof-irrelevance on subsets of decidable sets *)
@@ -301,7 +301,7 @@ Module DecidableEqDepSet (M:DecidableSet).
Lemma inj_pair2 :
forall (P:U -> Type) (p:U) (x y:P p),
- existS P p x = existS P p y -> x = y.
+ existT P p x = existT P p y -> x = y.
Proof eq_dep_eq__inj_pair2 U N.eq_dep_eq.
(** Injectivity of equality on dependent pairs with second component
diff --git a/theories/Logic/ExtensionalityFacts.v b/theories/Logic/ExtensionalityFacts.v
index f5e71ef4..9cbf756d 100644
--- a/theories/Logic/ExtensionalityFacts.v
+++ b/theories/Logic/ExtensionalityFacts.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/FunctionalExtensionality.v b/theories/Logic/FunctionalExtensionality.v
index 35db160f..ecb7428e 100644
--- a/theories/Logic/FunctionalExtensionality.v
+++ b/theories/Logic/FunctionalExtensionality.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/Hurkens.v b/theories/Logic/Hurkens.v
index bb03c666..1dce51b2 100644
--- a/theories/Logic/Hurkens.v
+++ b/theories/Logic/Hurkens.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -46,7 +46,7 @@ Lemma Omega : forall i:U -> bool, induct i -> b2p (i WF).
Proof.
intros i y.
apply y.
-unfold le, WF, induct in |- *.
+unfold le, WF, induct.
apply p2p2.
intros x H0.
apply y.
@@ -55,7 +55,7 @@ Qed.
Lemma lemma1 : induct (fun u => p2b (I u)).
Proof.
-unfold induct in |- *.
+unfold induct.
intros x p.
apply (p2p2 (I x)).
intro q.
diff --git a/theories/Logic/IndefiniteDescription.v b/theories/Logic/IndefiniteDescription.v
index 8badc07c..5424eea8 100644
--- a/theories/Logic/IndefiniteDescription.v
+++ b/theories/Logic/IndefiniteDescription.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/JMeq.v b/theories/Logic/JMeq.v
index 753009e6..530e0555 100644
--- a/theories/Logic/JMeq.v
+++ b/theories/Logic/JMeq.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/ProofIrrelevance.v b/theories/Logic/ProofIrrelevance.v
index 36508969..7d6d0cf8 100644
--- a/theories/Logic/ProofIrrelevance.v
+++ b/theories/Logic/ProofIrrelevance.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/ProofIrrelevanceFacts.v b/theories/Logic/ProofIrrelevanceFacts.v
index 6accc480..2e9f0c19 100644
--- a/theories/Logic/ProofIrrelevanceFacts.v
+++ b/theories/Logic/ProofIrrelevanceFacts.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -25,7 +25,7 @@ Module ProofIrrelevanceTheory (M:ProofIrrelevance).
forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p),
x = eq_rect p Q x p h.
Proof.
- intros; rewrite M.proof_irrelevance with (p1:=h) (p2:=refl_equal p).
+ intros; rewrite M.proof_irrelevance with (p1:=h) (p2:=eq_refl p).
reflexivity.
Qed.
End Eq_rect_eq.
diff --git a/theories/Logic/RelationalChoice.v b/theories/Logic/RelationalChoice.v
index d0d58e37..efec03d4 100644
--- a/theories/Logic/RelationalChoice.v
+++ b/theories/Logic/RelationalChoice.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Logic/SetIsType.v b/theories/Logic/SetIsType.v
index f0876fbc..c0a6f9ed 100644
--- a/theories/Logic/SetIsType.v
+++ b/theories/Logic/SetIsType.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)