diff options
Diffstat (limited to 'theories/Logic/WKL.v')
-rw-r--r-- | theories/Logic/WKL.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/theories/Logic/WKL.v b/theories/Logic/WKL.v index 408eca4a..95f3e83f 100644 --- a/theories/Logic/WKL.v +++ b/theories/Logic/WKL.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -40,7 +40,7 @@ Proposition is_path_from_characterization P n l : Proof. intros. split. - induction 1 as [|* HP _ (l'&Hl'&HPl')|* HP _ (l'&Hl'&HPl')]. - + exists []. split. reflexivity. intros n <-/le_n_0_eq. assumption. + + exists []. split. reflexivity. intros n <-%le_n_0_eq. assumption. + exists (true :: l'). split. apply eq_S, Hl'. intros [|] H. * assumption. * simpl. rewrite <- app_assoc. apply HPl', le_S_n, H. @@ -51,10 +51,10 @@ intros. split. + constructor. apply (HPl' 0). apply le_0_n. + eapply next_left. * apply (HPl' 0), le_0_n. - * fold (length l'). apply IHl'. intros n' H/le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption. + * fold (length l'). apply IHl'. intros n' H%le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption. + apply next_right. * apply (HPl' 0), le_0_n. - * fold (length l'). apply IHl'. intros n' H/le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption. + * fold (length l'). apply IHl'. intros n' H%le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption. Qed. (** [infinite_from P l] means that we can find arbitrary long paths |