summaryrefslogtreecommitdiff
path: root/theories/Logic/WKL.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/WKL.v')
-rw-r--r--theories/Logic/WKL.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/theories/Logic/WKL.v b/theories/Logic/WKL.v
index 408eca4a..95f3e83f 100644
--- a/theories/Logic/WKL.v
+++ b/theories/Logic/WKL.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -40,7 +40,7 @@ Proposition is_path_from_characterization P n l :
Proof.
intros. split.
- induction 1 as [|* HP _ (l'&Hl'&HPl')|* HP _ (l'&Hl'&HPl')].
- + exists []. split. reflexivity. intros n <-/le_n_0_eq. assumption.
+ + exists []. split. reflexivity. intros n <-%le_n_0_eq. assumption.
+ exists (true :: l'). split. apply eq_S, Hl'. intros [|] H.
* assumption.
* simpl. rewrite <- app_assoc. apply HPl', le_S_n, H.
@@ -51,10 +51,10 @@ intros. split.
+ constructor. apply (HPl' 0). apply le_0_n.
+ eapply next_left.
* apply (HPl' 0), le_0_n.
- * fold (length l'). apply IHl'. intros n' H/le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption.
+ * fold (length l'). apply IHl'. intros n' H%le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption.
+ apply next_right.
* apply (HPl' 0), le_0_n.
- * fold (length l'). apply IHl'. intros n' H/le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption.
+ * fold (length l'). apply IHl'. intros n' H%le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption.
Qed.
(** [infinite_from P l] means that we can find arbitrary long paths