diff options
Diffstat (limited to 'theories/Logic/ProofIrrelevanceFacts.v')
-rw-r--r-- | theories/Logic/ProofIrrelevanceFacts.v | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/theories/Logic/ProofIrrelevanceFacts.v b/theories/Logic/ProofIrrelevanceFacts.v new file mode 100644 index 00000000..dd3178eb --- /dev/null +++ b/theories/Logic/ProofIrrelevanceFacts.v @@ -0,0 +1,62 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(** This defines the functor that build consequences of proof-irrelevance *) + +Require Export EqdepFacts. + +Module Type ProofIrrelevance. + + Axiom proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2. + +End ProofIrrelevance. + +Module ProofIrrelevanceTheory (M:ProofIrrelevance). + + (** Proof-irrelevance implies uniqueness of reflexivity proofs *) + + Module Eq_rect_eq. + Lemma eq_rect_eq : + forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p), + x = eq_rect p Q x p h. + Proof. + intros; rewrite M.proof_irrelevance with (p1:=h) (p2:=refl_equal p). + reflexivity. + Qed. + End Eq_rect_eq. + + (** Export the theory of injective dependent elimination *) + + Module EqdepTheory := EqdepTheory(Eq_rect_eq). + Export EqdepTheory. + + Scheme eq_indd := Induction for eq Sort Prop. + + (** We derive the irrelevance of the membership property for subsets *) + + Lemma subset_eq_compat : + forall (U:Set) (P:U->Prop) (x y:U) (p:P x) (q:P y), + x = y -> exist P x p = exist P y q. + Proof. + intros. + rewrite M.proof_irrelevance with (p1:=q) (p2:=eq_rect x P p y H). + elim H using eq_indd. + reflexivity. + Qed. + + Lemma subsetT_eq_compat : + forall (U:Type) (P:U->Prop) (x y:U) (p:P x) (q:P y), + x = y -> existT P x p = existT P y q. + Proof. + intros. + rewrite M.proof_irrelevance with (p1:=q) (p2:=eq_rect x P p y H). + elim H using eq_indd. + reflexivity. + Qed. + +End ProofIrrelevanceTheory. |