diff options
Diffstat (limited to 'theories/Logic/Eqdep_dec.v')
-rw-r--r-- | theories/Logic/Eqdep_dec.v | 21 |
1 files changed, 9 insertions, 12 deletions
diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v index 740fcfcf..103efd22 100644 --- a/theories/Logic/Eqdep_dec.v +++ b/theories/Logic/Eqdep_dec.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Eqdep_dec.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Eqdep_dec.v 9597 2007-02-06 19:44:05Z herbelin $ i*) (** We prove that there is only one proof of [x=x], i.e [refl_equal x]. This holds if the equality upon the set of [x] is decidable. @@ -235,7 +235,7 @@ End DecidableEqDep. Module Type DecidableSet. - Parameter U:Set. + Parameter U:Type. Axiom eq_dec : forall x y:U, {x = y} + {x <> y}. End DecidableSet. @@ -276,14 +276,6 @@ Module DecidableEqDepSet (M:DecidableSet). forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p. Proof N.Streicher_K. - (** Injectivity of equality on dependent pairs with second component - in [Type] *) - - Lemma inj_pairT2 : - forall (P:U -> Type) (p:U) (x y:P p), - existT P p x = existT P p y -> x = y. - Proof N.inj_pairT2. - (** Proof-irrelevance on subsets of decidable sets *) Lemma inj_pairP2 : @@ -291,11 +283,16 @@ Module DecidableEqDepSet (M:DecidableSet). ex_intro P x p = ex_intro P x q -> p = q. Proof N.inj_pairP2. - (** Injectivity of equality on dependent pairs in [Set] *) + (** Injectivity of equality on dependent pairs in [Type] *) Lemma inj_pair2 : - forall (P:U -> Set) (p:U) (x y:P p), + forall (P:U -> Type) (p:U) (x y:P p), existS P p x = existS P p y -> x = y. Proof eq_dep_eq__inj_pair2 U N.eq_dep_eq. + (** Injectivity of equality on dependent pairs with second component + in [Type] *) + + Notation inj_pairT2 := inj_pair2. + End DecidableEqDepSet. |