summaryrefslogtreecommitdiff
path: root/theories/Logic/EqdepFacts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/EqdepFacts.v')
-rw-r--r--theories/Logic/EqdepFacts.v136
1 files changed, 111 insertions, 25 deletions
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v
index 2d5f1537..a22f286e 100644
--- a/theories/Logic/EqdepFacts.v
+++ b/theories/Logic/EqdepFacts.v
@@ -1,13 +1,17 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: EqdepFacts.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
+(* File Eqdep.v created by Christine Paulin-Mohring in Coq V5.6, May 1992 *)
+(* Further documentation and variants of eq_rect_eq by Hugo Herbelin,
+ Apr 2003 *)
+(* Abstraction with respect to the eq_rect_eq axiom and renaming to
+ EqdepFacts.v by Hugo Herbelin, Mar 2006 *)
(** This file defines dependent equality and shows its equivalence with
equality on dependent pairs (inhabiting sigma-types). It derives
@@ -33,7 +37,8 @@
Table of contents:
-1. Definition of dependent equality and equivalence with equality
+1. Definition of dependent equality and equivalence with equality of
+ dependent pairs and with dependent pair of equalities
2. Eq_rect_eq <-> Eq_dep_eq <-> UIP <-> UIP_refl <-> K
@@ -45,6 +50,8 @@ Table of contents:
(************************************************************************)
(** * Definition of dependent equality and equivalence with equality of dependent pairs *)
+Import EqNotations.
+
Section Dependent_Equality.
Variable U : Type.
@@ -75,11 +82,11 @@ Section Dependent_Equality.
Scheme eq_indd := Induction for eq Sort Prop.
- (** Equivalent definition of dependent equality expressed as a non
- dependent inductive type *)
+ (** Equivalent definition of dependent equality as a dependent pair of
+ equalities *)
Inductive eq_dep1 (p:U) (x:P p) (q:U) (y:P q) : Prop :=
- eq_dep1_intro : forall h:q = p, x = eq_rect q P y p h -> eq_dep1 p x q y.
+ eq_dep1_intro : forall h:q = p, x = rew h in y -> eq_dep1 p x q y.
Lemma eq_dep1_dep :
forall (p:U) (x:P p) (q:U) (y:P q), eq_dep1 p x q y -> eq_dep p x q y.
@@ -94,14 +101,14 @@ Section Dependent_Equality.
forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep1 p x q y.
Proof.
destruct 1.
- apply eq_dep1_intro with (refl_equal p).
- simpl in |- *; trivial.
+ apply eq_dep1_intro with (eq_refl p).
+ simpl; trivial.
Qed.
End Dependent_Equality.
-Implicit Arguments eq_dep [U P].
-Implicit Arguments eq_dep1 [U P].
+Arguments eq_dep [U P] p x q _.
+Arguments eq_dep1 [U P] p x q y.
(** Dependent equality is equivalent to equality on dependent pairs *)
@@ -114,26 +121,105 @@ Proof.
apply eq_dep_intro.
Qed.
-Notation eq_sigS_eq_dep := eq_sigT_eq_dep (only parsing). (* Compatibility *)
+Notation eq_sigS_eq_dep := eq_sigT_eq_dep (compat "8.2"). (* Compatibility *)
-Lemma equiv_eqex_eqdep :
+Lemma eq_dep_eq_sigT :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
- existT P p x = existT P q y <-> eq_dep p x q y.
+ eq_dep p x q y -> existT P p x = existT P q y.
Proof.
- split.
- (* -> *)
- apply eq_sigT_eq_dep.
- (* <- *)
destruct 1; reflexivity.
Qed.
-Lemma eq_dep_eq_sigT :
+Lemma eq_sigT_iff_eq_dep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
- eq_dep p x q y -> existT P p x = existT P q y.
+ existT P p x = existT P q y <-> eq_dep p x q y.
+Proof.
+ split; auto using eq_sigT_eq_dep, eq_dep_eq_sigT.
+Qed.
+
+Notation equiv_eqex_eqdep := eq_sigT_iff_eq_dep (only parsing). (* Compat *)
+
+Lemma eq_sig_eq_dep :
+ forall (U:Prop) (P:U -> Prop) (p q:U) (x:P p) (y:P q),
+ exist P p x = exist P q y -> eq_dep p x q y.
+Proof.
+ intros.
+ dependent rewrite H.
+ apply eq_dep_intro.
+Qed.
+
+Lemma eq_dep_eq_sig :
+ forall (U:Prop) (P:U -> Prop) (p q:U) (x:P p) (y:P q),
+ eq_dep p x q y -> exist P p x = exist P q y.
Proof.
destruct 1; reflexivity.
Qed.
+Lemma eq_sig_iff_eq_dep :
+ forall (U:Prop) (P:U -> Prop) (p q:U) (x:P p) (y:P q),
+ exist P p x = exist P q y <-> eq_dep p x q y.
+Proof.
+ split; auto using eq_sig_eq_dep, eq_dep_eq_sig.
+Qed.
+
+(** Dependent equality is equivalent to a dependent pair of equalities *)
+
+Set Implicit Arguments.
+
+Lemma eq_sigT_sig_eq : forall X P (x1 x2:X) H1 H2, existT P x1 H1 = existT P x2 H2 <-> {H:x1=x2 | rew H in H1 = H2}.
+Proof.
+ intros; split; intro H.
+ - change x2 with (projT1 (existT P x2 H2)).
+ change H2 with (projT2 (existT P x2 H2)) at 5.
+ destruct H. simpl.
+ exists eq_refl.
+ reflexivity.
+ - destruct H as (->,<-).
+ reflexivity.
+Defined.
+
+Lemma eq_sigT_fst :
+ forall X P (x1 x2:X) H1 H2 (H:existT P x1 H1 = existT P x2 H2), x1 = x2.
+Proof.
+ intros.
+ change x2 with (projT1 (existT P x2 H2)).
+ destruct H.
+ reflexivity.
+Defined.
+
+Lemma eq_sigT_snd :
+ forall X P (x1 x2:X) H1 H2 (H:existT P x1 H1 = existT P x2 H2), rew (eq_sigT_fst H) in H1 = H2.
+Proof.
+ intros.
+ unfold eq_sigT_fst.
+ change x2 with (projT1 (existT P x2 H2)).
+ change H2 with (projT2 (existT P x2 H2)) at 3.
+ destruct H.
+ reflexivity.
+Defined.
+
+Lemma eq_sig_fst :
+ forall X P (x1 x2:X) H1 H2 (H:exist P x1 H1 = exist P x2 H2), x1 = x2.
+Proof.
+ intros.
+ change x2 with (proj1_sig (exist P x2 H2)).
+ destruct H.
+ reflexivity.
+Defined.
+
+Lemma eq_sig_snd :
+ forall X P (x1 x2:X) H1 H2 (H:exist P x1 H1 = exist P x2 H2), rew (eq_sig_fst H) in H1 = H2.
+Proof.
+ intros.
+ unfold eq_sig_fst, eq_ind.
+ change x2 with (proj1_sig (exist P x2 H2)).
+ change H2 with (proj2_sig (exist P x2 H2)) at 3.
+ destruct H.
+ reflexivity.
+Defined.
+
+Unset Implicit Arguments.
+
(** Exported hints *)
Hint Resolve eq_dep_intro: core.
@@ -164,12 +250,12 @@ Section Equivalences.
(** Uniqueness of Reflexive Identity Proofs *)
Definition UIP_refl_ :=
- forall (x:U) (p:x = x), p = refl_equal x.
+ forall (x:U) (p:x = x), p = eq_refl x.
(** Streicher's axiom K *)
Definition Streicher_K_ :=
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
(** Injectivity of Dependent Equality is a consequence of *)
(** Invariance by Substitution of Reflexive Equality Proof *)
@@ -303,14 +389,14 @@ Proof (eq_dep_eq__UIP U eq_dep_eq).
(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)
-Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x.
+Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x.
Proof (UIP__UIP_refl U UIP).
(** Streicher's axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs *)
Lemma Streicher_K :
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof (UIP_refl__Streicher_K U UIP_refl).
End Axioms.
@@ -326,5 +412,5 @@ Notation inj_pairT2 := inj_pair2.
End EqdepTheory.
-Implicit Arguments eq_dep [].
-Implicit Arguments eq_dep1 [].
+Arguments eq_dep U P p x q _ : clear implicits.
+Arguments eq_dep1 U P p x q y : clear implicits.