diff options
Diffstat (limited to 'theories/Logic/EqdepFacts.v')
-rw-r--r-- | theories/Logic/EqdepFacts.v | 153 |
1 files changed, 121 insertions, 32 deletions
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v index c0fc0d72..34aba486 100644 --- a/theories/Logic/EqdepFacts.v +++ b/theories/Logic/EqdepFacts.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -52,6 +52,8 @@ Table of contents: Import EqNotations. +(* Set Universe Polymorphism. *) + Section Dependent_Equality. Variable U : Type. @@ -140,7 +142,7 @@ Qed. Notation equiv_eqex_eqdep := eq_sigT_iff_eq_dep (only parsing). (* Compat *) Lemma eq_sig_eq_dep : - forall (U:Prop) (P:U -> Prop) (p q:U) (x:P p) (y:P q), + forall (U:Type) (P:U -> Prop) (p q:U) (x:P p) (y:P q), exist P p x = exist P q y -> eq_dep p x q y. Proof. intros. @@ -149,24 +151,25 @@ Proof. Qed. Lemma eq_dep_eq_sig : - forall (U:Prop) (P:U -> Prop) (p q:U) (x:P p) (y:P q), + forall (U:Type) (P:U -> Prop) (p q:U) (x:P p) (y:P q), eq_dep p x q y -> exist P p x = exist P q y. Proof. destruct 1; reflexivity. Qed. Lemma eq_sig_iff_eq_dep : - forall (U:Prop) (P:U -> Prop) (p q:U) (x:P p) (y:P q), + forall (U:Type) (P:U -> Prop) (p q:U) (x:P p) (y:P q), exist P p x = exist P q y <-> eq_dep p x q y. Proof. split; auto using eq_sig_eq_dep, eq_dep_eq_sig. Qed. -(** Dependent equality is equivalent to a dependent pair of equalities *) +(** Dependent equality is equivalent tco a dependent pair of equalities *) Set Implicit Arguments. -Lemma eq_sigT_sig_eq : forall X P (x1 x2:X) H1 H2, existT P x1 H1 = existT P x2 H2 <-> {H:x1=x2 | rew H in H1 = H2}. +Lemma eq_sigT_sig_eq : forall X P (x1 x2:X) H1 H2, existT P x1 H1 = existT P x2 H2 <-> + {H:x1=x2 | rew H in H1 = H2}. Proof. intros; split; intro H. - change x2 with (projT1 (existT P x2 H2)). @@ -234,82 +237,113 @@ Section Equivalences. (** Invariance by Substitution of Reflexive Equality Proofs *) - Definition Eq_rect_eq := - forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h. + Definition Eq_rect_eq_on (p : U) (Q : U -> Type) (x : Q p) := + forall (h : p = p), x = eq_rect p Q x p h. + Definition Eq_rect_eq := forall p Q x, Eq_rect_eq_on p Q x. (** Injectivity of Dependent Equality *) - Definition Eq_dep_eq := - forall (P:U->Type) (p:U) (x y:P p), eq_dep p x p y -> x = y. + Definition Eq_dep_eq_on (P : U -> Type) (p : U) (x : P p) := + forall (y : P p), eq_dep p x p y -> x = y. + Definition Eq_dep_eq := forall P p x, Eq_dep_eq_on P p x. (** Uniqueness of Identity Proofs (UIP) *) - Definition UIP_ := - forall (x y:U) (p1 p2:x = y), p1 = p2. + Definition UIP_on_ (x y : U) (p1 : x = y) := + forall (p2 : x = y), p1 = p2. + Definition UIP_ := forall x y p1, UIP_on_ x y p1. (** Uniqueness of Reflexive Identity Proofs *) - Definition UIP_refl_ := - forall (x:U) (p:x = x), p = eq_refl x. + Definition UIP_refl_on_ (x : U) := + forall (p : x = x), p = eq_refl x. + Definition UIP_refl_ := forall x, UIP_refl_on_ x. (** Streicher's axiom K *) - Definition Streicher_K_ := - forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p. + Definition Streicher_K_on_ (x : U) (P : x = x -> Prop) := + P (eq_refl x) -> forall p : x = x, P p. + Definition Streicher_K_ := forall x P, Streicher_K_on_ x P. (** Injectivity of Dependent Equality is a consequence of *) (** Invariance by Substitution of Reflexive Equality Proof *) - Lemma eq_rect_eq__eq_dep1_eq : - Eq_rect_eq -> forall (P:U->Type) (p:U) (x y:P p), eq_dep1 p x p y -> x = y. + Lemma eq_rect_eq_on__eq_dep1_eq_on (p : U) (P : U -> Type) (y : P p) : + Eq_rect_eq_on p P y -> forall (x : P p), eq_dep1 p x p y -> x = y. Proof. intro eq_rect_eq. simple destruct 1; intro. rewrite <- eq_rect_eq; auto. Qed. + Lemma eq_rect_eq__eq_dep1_eq : + Eq_rect_eq -> forall (P:U->Type) (p:U) (x y:P p), eq_dep1 p x p y -> x = y. + Proof (fun eq_rect_eq P p y x => + @eq_rect_eq_on__eq_dep1_eq_on p P x (eq_rect_eq p P x) y). - Lemma eq_rect_eq__eq_dep_eq : Eq_rect_eq -> Eq_dep_eq. + Lemma eq_rect_eq_on__eq_dep_eq_on (p : U) (P : U -> Type) (x : P p) : + Eq_rect_eq_on p P x -> Eq_dep_eq_on P p x. Proof. intros eq_rect_eq; red; intros. - apply (eq_rect_eq__eq_dep1_eq eq_rect_eq); apply eq_dep_dep1; trivial. + symmetry; apply (eq_rect_eq_on__eq_dep1_eq_on _ _ _ eq_rect_eq). + apply eq_dep_sym in H; apply eq_dep_dep1; trivial. Qed. + Lemma eq_rect_eq__eq_dep_eq : Eq_rect_eq -> Eq_dep_eq. + Proof (fun eq_rect_eq P p x y => + @eq_rect_eq_on__eq_dep_eq_on p P x (eq_rect_eq p P x) y). (** Uniqueness of Identity Proofs (UIP) is a consequence of *) (** Injectivity of Dependent Equality *) - Lemma eq_dep_eq__UIP : Eq_dep_eq -> UIP_. + Lemma eq_dep_eq_on__UIP_on (x y : U) (p1 : x = y) : + Eq_dep_eq_on (fun y => x = y) x eq_refl -> UIP_on_ x y p1. Proof. intro eq_dep_eq; red. - intros; apply eq_dep_eq with (P := fun y => x = y). - elim p2 using eq_indd. elim p1 using eq_indd. + intros; apply eq_dep_eq. + elim p2 using eq_indd. apply eq_dep_intro. Qed. + Lemma eq_dep_eq__UIP : Eq_dep_eq -> UIP_. + Proof (fun eq_dep_eq x y p1 => + @eq_dep_eq_on__UIP_on x y p1 (eq_dep_eq _ _ _)). (** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *) - Lemma UIP__UIP_refl : UIP_ -> UIP_refl_. + Lemma UIP_on__UIP_refl_on (x : U) : + UIP_on_ x x eq_refl -> UIP_refl_on_ x. Proof. - intro UIP; red; intros; apply UIP. + intro UIP; red; intros; symmetry; apply UIP. Qed. + Lemma UIP__UIP_refl : UIP_ -> UIP_refl_. + Proof (fun UIP x p => + @UIP_on__UIP_refl_on x (UIP x x eq_refl) p). (** Streicher's axiom K is a direct consequence of Uniqueness of Reflexive Identity Proofs *) - Lemma UIP_refl__Streicher_K : UIP_refl_ -> Streicher_K_. + Lemma UIP_refl_on__Streicher_K_on (x : U) (P : x = x -> Prop) : + UIP_refl_on_ x -> Streicher_K_on_ x P. Proof. intro UIP_refl; red; intros; rewrite UIP_refl; assumption. Qed. + Lemma UIP_refl__Streicher_K : UIP_refl_ -> Streicher_K_. + Proof (fun UIP_refl x P => + @UIP_refl_on__Streicher_K_on x P (UIP_refl x)). (** We finally recover from K the Invariance by Substitution of Reflexive Equality Proofs *) - Lemma Streicher_K__eq_rect_eq : Streicher_K_ -> Eq_rect_eq. + Lemma Streicher_K_on__eq_rect_eq_on (p : U) (P : U -> Type) (x : P p) : + Streicher_K_on_ p (fun h => x = rew -> [P] h in x) + -> Eq_rect_eq_on p P x. Proof. intro Streicher_K; red; intros. - apply Streicher_K with (p := h). + apply Streicher_K. reflexivity. Qed. + Lemma Streicher_K__eq_rect_eq : Streicher_K_ -> Eq_rect_eq. + Proof (fun Streicher_K p P x => + @Streicher_K_on__eq_rect_eq_on p P x (Streicher_K p _)). (** Remark: It is reasonable to think that [eq_rect_eq] is strictly stronger than [eq_rec_eq] (which is [eq_rect_eq] restricted on [Set]): @@ -317,7 +351,7 @@ Section Equivalences. [Definition Eq_rec_eq := forall (P:U -> Set) (p:U) (x:P p) (h:p = p), x = eq_rec p P x p h.] - Typically, [eq_rect_eq] allows to prove UIP and Streicher's K what + Typically, [eq_rect_eq] allows proving UIP and Streicher's K what does not seem possible with [eq_rec_eq]. In particular, the proof of [UIP] requires to use [eq_rect_eq] on [fun y -> x=y] which is in [Type] but not in [Set]. @@ -325,22 +359,55 @@ Section Equivalences. End Equivalences. +(** UIP_refl is downward closed (a short proof of the key lemma of Voevodsky's + proof of inclusion of h-level n into h-level n+1; see hlevelntosn + in https://github.com/vladimirias/Foundations.git). *) + +Theorem UIP_shift_on (X : Type) (x : X) : + UIP_refl_on_ X x -> forall y : x = x, UIP_refl_on_ (x = x) y. +Proof. + intros UIP_refl y. + rewrite (UIP_refl y). + intros z. + assert (UIP:forall y' y'' : x = x, y' = y''). + { intros. apply eq_trans with (eq_refl x). apply UIP_refl. + symmetry. apply UIP_refl. } + transitivity (eq_trans (eq_trans (UIP (eq_refl x) (eq_refl x)) z) + (eq_sym (UIP (eq_refl x) (eq_refl x)))). + - destruct z. destruct (UIP _ _). reflexivity. + - change + (match eq_refl x as y' in _ = x' return y' = y' -> Prop with + | eq_refl => fun z => z = (eq_refl (eq_refl x)) + end (eq_trans (eq_trans (UIP (eq_refl x) (eq_refl x)) z) + (eq_sym (UIP (eq_refl x) (eq_refl x))))). + destruct z. destruct (UIP _ _). reflexivity. +Qed. +Theorem UIP_shift : forall U, UIP_refl_ U -> forall x:U, UIP_refl_ (x = x). +Proof (fun U UIP_refl x => + @UIP_shift_on U x (UIP_refl x)). + Section Corollaries. Variable U:Type. (** UIP implies the injectivity of equality on dependent pairs in Type *) - Definition Inj_dep_pair := - forall (P:U -> Type) (p:U) (x y:P p), existT P p x = existT P p y -> x = y. - Lemma eq_dep_eq__inj_pair2 : Eq_dep_eq U -> Inj_dep_pair. + Definition Inj_dep_pair_on (P : U -> Type) (p : U) (x : P p) := + forall (y : P p), existT P p x = existT P p y -> x = y. + Definition Inj_dep_pair := forall P p x, Inj_dep_pair_on P p x. + + Lemma eq_dep_eq_on__inj_pair2_on (P : U -> Type) (p : U) (x : P p) : + Eq_dep_eq_on U P p x -> Inj_dep_pair_on P p x. Proof. intro eq_dep_eq; red; intros. apply eq_dep_eq. apply eq_sigT_eq_dep. assumption. Qed. + Lemma eq_dep_eq__inj_pair2 : Eq_dep_eq U -> Inj_dep_pair. + Proof (fun eq_dep_eq P p x => + @eq_dep_eq_on__inj_pair2_on P p x (eq_dep_eq P p x)). End Corollaries. @@ -412,5 +479,27 @@ Notation inj_pairT2 := inj_pair2. End EqdepTheory. +(** Basic facts about eq_dep *) + +Lemma f_eq_dep : + forall U (P:U->Type) R p q x y (f:forall p, P p -> R p), + eq_dep p x q y -> eq_dep p (f p x) q (f q y). +Proof. +intros * []. reflexivity. +Qed. + +Lemma eq_dep_non_dep : + forall U P p q x y, @eq_dep U (fun _ => P) p x q y -> x = y. +Proof. +intros * []. reflexivity. +Qed. + +Lemma f_eq_dep_non_dep : + forall U (P:U->Type) R p q x y (f:forall p, P p -> R), + eq_dep p x q y -> f p x = f q y. +Proof. +intros * []. reflexivity. +Qed. + Arguments eq_dep U P p x q _ : clear implicits. Arguments eq_dep1 U P p x q y : clear implicits. |