diff options
Diffstat (limited to 'theories/Logic/EqdepFacts.v')
-rw-r--r-- | theories/Logic/EqdepFacts.v | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v index 844bff88..d5738c82 100644 --- a/theories/Logic/EqdepFacts.v +++ b/theories/Logic/EqdepFacts.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: EqdepFacts.v 11095 2008-06-10 19:36:10Z herbelin $ i*) +(*i $Id: EqdepFacts.v 11735 2009-01-02 17:22:31Z herbelin $ i*) (** This file defines dependent equality and shows its equivalence with equality on dependent pairs (inhabiting sigma-types). It derives @@ -53,7 +53,7 @@ Section Dependent_Equality. Inductive eq_dep (p:U) (x:P p) : forall q:U, P q -> Prop := eq_dep_intro : eq_dep p x p x. - Hint Constructors eq_dep: core v62. + Hint Constructors eq_dep: core. Lemma eq_dep_refl : forall (p:U) (x:P p), eq_dep p x p x. Proof eq_dep_intro. @@ -63,7 +63,7 @@ Section Dependent_Equality. Proof. destruct 1; auto. Qed. - Hint Immediate eq_dep_sym: core v62. + Hint Immediate eq_dep_sym: core. Lemma eq_dep_trans : forall (p q r:U) (x:P p) (y:P q) (z:P r), @@ -135,8 +135,8 @@ Qed. (** Exported hints *) -Hint Resolve eq_dep_intro: core v62. -Hint Immediate eq_dep_sym: core v62. +Hint Resolve eq_dep_intro: core. +Hint Immediate eq_dep_sym: core. (************************************************************************) (** * Eq_rect_eq <-> Eq_dep_eq <-> UIP <-> UIP_refl <-> K *) |