diff options
Diffstat (limited to 'theories/Logic/Eqdep.v')
-rwxr-xr-x | theories/Logic/Eqdep.v | 188 |
1 files changed, 188 insertions, 0 deletions
diff --git a/theories/Logic/Eqdep.v b/theories/Logic/Eqdep.v new file mode 100755 index 00000000..24905039 --- /dev/null +++ b/theories/Logic/Eqdep.v @@ -0,0 +1,188 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Eqdep.v,v 1.10.2.1 2004/07/16 19:31:06 herbelin Exp $ i*) + +(** This file defines dependent equality and shows its equivalence with + equality on dependent pairs (inhabiting sigma-types). It axiomatizes + the invariance by substitution of reflexive equality proofs and + shows the equivalence between the 4 following statements + + - Invariance by Substitution of Reflexive Equality Proofs. + - Injectivity of Dependent Equality + - Uniqueness of Identity Proofs + - Uniqueness of Reflexive Identity Proofs + - Streicher's Axiom K + + These statements are independent of the calculus of constructions [2]. + + References: + + [1] T. Streicher, Semantical Investigations into Intensional Type Theory, + Habilitationsschrift, LMU München, 1993. + [2] M. Hofmann, T. Streicher, The groupoid interpretation of type theory, + Proceedings of the meeting Twenty-five years of constructive + type theory, Venice, Oxford University Press, 1998 +*) + +Section Dependent_Equality. + +Variable U : Type. +Variable P : U -> Type. + +(** Dependent equality *) + +Inductive eq_dep (p:U) (x:P p) : forall q:U, P q -> Prop := + eq_dep_intro : eq_dep p x p x. +Hint Constructors eq_dep: core v62. + +Lemma eq_dep_sym : + forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep q y p x. +Proof. +destruct 1; auto. +Qed. +Hint Immediate eq_dep_sym: core v62. + +Lemma eq_dep_trans : + forall (p q r:U) (x:P p) (y:P q) (z:P r), + eq_dep p x q y -> eq_dep q y r z -> eq_dep p x r z. +Proof. +destruct 1; auto. +Qed. + +Scheme eq_indd := Induction for eq Sort Prop. + +Inductive eq_dep1 (p:U) (x:P p) (q:U) (y:P q) : Prop := + eq_dep1_intro : forall h:q = p, x = eq_rect q P y p h -> eq_dep1 p x q y. + +Lemma eq_dep1_dep : + forall (p:U) (x:P p) (q:U) (y:P q), eq_dep1 p x q y -> eq_dep p x q y. +Proof. +destruct 1 as (eq_qp, H). +destruct eq_qp using eq_indd. +rewrite H. +apply eq_dep_intro. +Qed. + +Lemma eq_dep_dep1 : + forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep1 p x q y. +Proof. +destruct 1. +apply eq_dep1_intro with (refl_equal p). +simpl in |- *; trivial. +Qed. + +(** Invariance by Substitution of Reflexive Equality Proofs *) + +Axiom eq_rect_eq : + forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h. + +(** Injectivity of Dependent Equality is a consequence of *) +(** Invariance by Substitution of Reflexive Equality Proof *) + +Lemma eq_dep1_eq : forall (p:U) (x y:P p), eq_dep1 p x p y -> x = y. +Proof. +simple destruct 1; intro. +rewrite <- eq_rect_eq; auto. +Qed. + +Lemma eq_dep_eq : forall (p:U) (x y:P p), eq_dep p x p y -> x = y. +Proof. +intros; apply eq_dep1_eq; apply eq_dep_dep1; trivial. +Qed. + +End Dependent_Equality. + +(** Uniqueness of Identity Proofs (UIP) is a consequence of *) +(** Injectivity of Dependent Equality *) + +Lemma UIP : forall (U:Type) (x y:U) (p1 p2:x = y), p1 = p2. +Proof. +intros; apply eq_dep_eq with (P := fun y => x = y). +elim p2 using eq_indd. +elim p1 using eq_indd. +apply eq_dep_intro. +Qed. + +(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *) + +Lemma UIP_refl : forall (U:Type) (x:U) (p:x = x), p = refl_equal x. +Proof. +intros; apply UIP. +Qed. + +(** Streicher axiom K is a direct consequence of Uniqueness of + Reflexive Identity Proofs *) + +Lemma Streicher_K : + forall (U:Type) (x:U) (P:x = x -> Prop), + P (refl_equal x) -> forall p:x = x, P p. +Proof. +intros; rewrite UIP_refl; assumption. +Qed. + +(** We finally recover eq_rec_eq (alternatively eq_rect_eq) from K *) + +Lemma eq_rec_eq : + forall (U:Type) (P:U -> Set) (p:U) (x:P p) (h:p = p), x = eq_rec p P x p h. +Proof. +intros. +apply Streicher_K with (p := h). +reflexivity. +Qed. + +(** Dependent equality is equivalent to equality on dependent pairs *) + +Lemma equiv_eqex_eqdep : + forall (U:Set) (P:U -> Set) (p q:U) (x:P p) (y:P q), + existS P p x = existS P q y <-> eq_dep U P p x q y. +Proof. +split. +(* -> *) +intro H. +change p with (projS1 (existS P p x)) in |- *. +change x at 2 with (projS2 (existS P p x)) in |- *. +rewrite H. +apply eq_dep_intro. +(* <- *) +destruct 1; reflexivity. +Qed. + +(** UIP implies the injectivity of equality on dependent pairs *) + +Lemma inj_pair2 : + forall (U:Set) (P:U -> Set) (p:U) (x y:P p), + existS P p x = existS P p y -> x = y. +Proof. +intros. +apply (eq_dep_eq U P). +generalize (equiv_eqex_eqdep U P p p x y). +simple induction 1. +intros. +auto. +Qed. + +(** UIP implies the injectivity of equality on dependent pairs *) + +Lemma inj_pairT2 : + forall (U:Type) (P:U -> Type) (p:U) (x y:P p), + existT P p x = existT P p y -> x = y. +Proof. +intros. +apply (eq_dep_eq U P). +change p at 1 with (projT1 (existT P p x)) in |- *. +change x at 2 with (projT2 (existT P p x)) in |- *. +rewrite H. +apply eq_dep_intro. +Qed. + +(** The main results to be exported *) + +Hint Resolve eq_dep_intro eq_dep_eq: core v62. +Hint Immediate eq_dep_sym: core v62. +Hint Resolve inj_pair2 inj_pairT2: core. |