summaryrefslogtreecommitdiff
path: root/theories/Logic/Epsilon.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/Epsilon.v')
-rw-r--r--theories/Logic/Epsilon.v12
1 files changed, 6 insertions, 6 deletions
diff --git a/theories/Logic/Epsilon.v b/theories/Logic/Epsilon.v
index 65d4d853..d433be94 100644
--- a/theories/Logic/Epsilon.v
+++ b/theories/Logic/Epsilon.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Epsilon.v 10170 2007-10-03 14:41:25Z herbelin $ i*)
+(*i $Id$ i*)
(** This file provides indefinite description under the form of
Hilbert's epsilon operator; it does not assume classical logic. *)
@@ -17,12 +17,12 @@ Set Implicit Arguments.
(** Hilbert's epsilon: operator and specification in one statement *)
-Axiom epsilon_statement :
+Axiom epsilon_statement :
forall (A : Type) (P : A->Prop), inhabited A ->
{ x : A | (exists x, P x) -> P x }.
Lemma constructive_indefinite_description :
- forall (A : Type) (P : A->Prop),
+ forall (A : Type) (P : A->Prop),
(exists x, P x) -> { x : A | P x }.
Proof.
apply epsilon_imp_constructive_indefinite_description.
@@ -45,7 +45,7 @@ Proof.
Qed.
Lemma constructive_definite_description :
- forall (A : Type) (P : A->Prop),
+ forall (A : Type) (P : A->Prop),
(exists! x, P x) -> { x : A | P x }.
Proof.
apply iota_imp_constructive_definite_description.
@@ -57,7 +57,7 @@ Qed.
Definition epsilon (A : Type) (i:inhabited A) (P : A->Prop) : A
:= proj1_sig (epsilon_statement P i).
-Definition epsilon_spec (A : Type) (i:inhabited A) (P : A->Prop) :
+Definition epsilon_spec (A : Type) (i:inhabited A) (P : A->Prop) :
(exists x, P x) -> P (epsilon i P)
:= proj2_sig (epsilon_statement P i).
@@ -66,7 +66,7 @@ Definition epsilon_spec (A : Type) (i:inhabited A) (P : A->Prop) :
Definition iota (A : Type) (i:inhabited A) (P : A->Prop) : A
:= proj1_sig (iota_statement P i).
-Definition iota_spec (A : Type) (i:inhabited A) (P : A->Prop) :
+Definition iota_spec (A : Type) (i:inhabited A) (P : A->Prop) :
(exists! x:A, P x) -> P (iota i P)
:= proj2_sig (iota_statement P i).