summaryrefslogtreecommitdiff
path: root/theories/Logic/Decidable.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/Decidable.v')
-rw-r--r--theories/Logic/Decidable.v60
1 files changed, 60 insertions, 0 deletions
diff --git a/theories/Logic/Decidable.v b/theories/Logic/Decidable.v
new file mode 100644
index 00000000..08babda9
--- /dev/null
+++ b/theories/Logic/Decidable.v
@@ -0,0 +1,60 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Decidable.v,v 1.5.2.1 2004/07/16 19:31:06 herbelin Exp $ i*)
+
+(** Properties of decidable propositions *)
+
+Definition decidable (P:Prop) := P \/ ~ P.
+
+Theorem dec_not_not : forall P:Prop, decidable P -> (~ P -> False) -> P.
+unfold decidable in |- *; tauto.
+Qed.
+
+Theorem dec_True : decidable True.
+unfold decidable in |- *; auto.
+Qed.
+
+Theorem dec_False : decidable False.
+unfold decidable, not in |- *; auto.
+Qed.
+
+Theorem dec_or :
+ forall A B:Prop, decidable A -> decidable B -> decidable (A \/ B).
+unfold decidable in |- *; tauto.
+Qed.
+
+Theorem dec_and :
+ forall A B:Prop, decidable A -> decidable B -> decidable (A /\ B).
+unfold decidable in |- *; tauto.
+Qed.
+
+Theorem dec_not : forall A:Prop, decidable A -> decidable (~ A).
+unfold decidable in |- *; tauto.
+Qed.
+
+Theorem dec_imp :
+ forall A B:Prop, decidable A -> decidable B -> decidable (A -> B).
+unfold decidable in |- *; tauto.
+Qed.
+
+Theorem not_not : forall P:Prop, decidable P -> ~ ~ P -> P.
+unfold decidable in |- *; tauto. Qed.
+
+Theorem not_or : forall A B:Prop, ~ (A \/ B) -> ~ A /\ ~ B.
+tauto. Qed.
+
+Theorem not_and : forall A B:Prop, decidable A -> ~ (A /\ B) -> ~ A \/ ~ B.
+unfold decidable in |- *; tauto. Qed.
+
+Theorem not_imp : forall A B:Prop, decidable A -> ~ (A -> B) -> A /\ ~ B.
+unfold decidable in |- *; tauto.
+Qed.
+
+Theorem imp_simp : forall A B:Prop, decidable A -> (A -> B) -> ~ A \/ B.
+unfold decidable in |- *; tauto.
+Qed.