summaryrefslogtreecommitdiff
path: root/theories/Logic/Decidable.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/Decidable.v')
-rw-r--r--theories/Logic/Decidable.v26
1 files changed, 13 insertions, 13 deletions
diff --git a/theories/Logic/Decidable.v b/theories/Logic/Decidable.v
index 00d63252..c6d32d9b 100644
--- a/theories/Logic/Decidable.v
+++ b/theories/Logic/Decidable.v
@@ -5,7 +5,7 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Decidable.v 11735 2009-01-02 17:22:31Z herbelin $ i*)
+(*i $Id$ i*)
(** Properties of decidable propositions *)
@@ -13,7 +13,7 @@ Definition decidable (P:Prop) := P \/ ~ P.
Theorem dec_not_not : forall P:Prop, decidable P -> (~ P -> False) -> P.
Proof.
-unfold decidable; tauto.
+unfold decidable; tauto.
Qed.
Theorem dec_True : decidable True.
@@ -29,27 +29,27 @@ Qed.
Theorem dec_or :
forall A B:Prop, decidable A -> decidable B -> decidable (A \/ B).
Proof.
-unfold decidable; tauto.
+unfold decidable; tauto.
Qed.
Theorem dec_and :
forall A B:Prop, decidable A -> decidable B -> decidable (A /\ B).
Proof.
-unfold decidable; tauto.
+unfold decidable; tauto.
Qed.
Theorem dec_not : forall A:Prop, decidable A -> decidable (~ A).
Proof.
-unfold decidable; tauto.
+unfold decidable; tauto.
Qed.
Theorem dec_imp :
forall A B:Prop, decidable A -> decidable B -> decidable (A -> B).
Proof.
-unfold decidable; tauto.
+unfold decidable; tauto.
Qed.
-Theorem dec_iff :
+Theorem dec_iff :
forall A B:Prop, decidable A -> decidable B -> decidable (A<->B).
Proof.
unfold decidable; tauto.
@@ -67,7 +67,7 @@ Qed.
Theorem not_and : forall A B:Prop, decidable A -> ~ (A /\ B) -> ~ A \/ ~ B.
Proof.
-unfold decidable; tauto.
+unfold decidable; tauto.
Qed.
Theorem not_imp : forall A B:Prop, decidable A -> ~ (A -> B) -> A /\ ~ B.
@@ -80,16 +80,16 @@ Proof.
unfold decidable; tauto.
Qed.
-Theorem not_iff :
- forall A B:Prop, decidable A -> decidable B ->
+Theorem not_iff :
+ forall A B:Prop, decidable A -> decidable B ->
~ (A <-> B) -> (A /\ ~ B) \/ (~ A /\ B).
Proof.
unfold decidable; tauto.
Qed.
-(** Results formulated with iff, used in FSetDecide.
- Negation are expanded since it is unclear whether setoid rewrite
- will always perform conversion. *)
+(** Results formulated with iff, used in FSetDecide.
+ Negation are expanded since it is unclear whether setoid rewrite
+ will always perform conversion. *)
(** We begin with lemmas that, when read from left to right,
can be understood as ways to eliminate uses of [not]. *)