diff options
Diffstat (limited to 'theories/Logic/Classical_Prop.v')
-rwxr-xr-x | theories/Logic/Classical_Prop.v | 85 |
1 files changed, 85 insertions, 0 deletions
diff --git a/theories/Logic/Classical_Prop.v b/theories/Logic/Classical_Prop.v new file mode 100755 index 00000000..ccc26df1 --- /dev/null +++ b/theories/Logic/Classical_Prop.v @@ -0,0 +1,85 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Classical_Prop.v,v 1.6.2.1 2004/07/16 19:31:06 herbelin Exp $ i*) + +(** Classical Propositional Logic *) + +Require Import ProofIrrelevance. + +Hint Unfold not: core. + +Axiom classic : forall P:Prop, P \/ ~ P. + +Lemma NNPP : forall p:Prop, ~ ~ p -> p. +Proof. +unfold not in |- *; intros; elim (classic p); auto. +intro NP; elim (H NP). +Qed. + +Lemma not_imply_elim : forall P Q:Prop, ~ (P -> Q) -> P. +Proof. +intros; apply NNPP; red in |- *. +intro; apply H; intro; absurd P; trivial. +Qed. + +Lemma not_imply_elim2 : forall P Q:Prop, ~ (P -> Q) -> ~ Q. +Proof. +intros; elim (classic Q); auto. +Qed. + +Lemma imply_to_or : forall P Q:Prop, (P -> Q) -> ~ P \/ Q. +Proof. +intros; elim (classic P); auto. +Qed. + +Lemma imply_to_and : forall P Q:Prop, ~ (P -> Q) -> P /\ ~ Q. +Proof. +intros; split. +apply not_imply_elim with Q; trivial. +apply not_imply_elim2 with P; trivial. +Qed. + +Lemma or_to_imply : forall P Q:Prop, ~ P \/ Q -> P -> Q. +Proof. +simple induction 1; auto. +intros H1 H2; elim (H1 H2). +Qed. + +Lemma not_and_or : forall P Q:Prop, ~ (P /\ Q) -> ~ P \/ ~ Q. +Proof. +intros; elim (classic P); auto. +Qed. + +Lemma or_not_and : forall P Q:Prop, ~ P \/ ~ Q -> ~ (P /\ Q). +Proof. +simple induction 1; red in |- *; simple induction 2; auto. +Qed. + +Lemma not_or_and : forall P Q:Prop, ~ (P \/ Q) -> ~ P /\ ~ Q. +Proof. +intros; elim (classic P); auto. +Qed. + +Lemma and_not_or : forall P Q:Prop, ~ P /\ ~ Q -> ~ (P \/ Q). +Proof. +simple induction 1; red in |- *; simple induction 3; trivial. +Qed. + +Lemma imply_and_or : forall P Q:Prop, (P -> Q) -> P \/ Q -> Q. +Proof. +simple induction 2; trivial. +Qed. + +Lemma imply_and_or2 : forall P Q R:Prop, (P -> Q) -> P \/ R -> Q \/ R. +Proof. +simple induction 2; auto. +Qed. + +Lemma proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2. +Proof proof_irrelevance_cci classic.
\ No newline at end of file |