summaryrefslogtreecommitdiff
path: root/theories/Logic/ClassicalFacts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/ClassicalFacts.v')
-rw-r--r--theories/Logic/ClassicalFacts.v38
1 files changed, 19 insertions, 19 deletions
diff --git a/theories/Logic/ClassicalFacts.v b/theories/Logic/ClassicalFacts.v
index bcec657a..34ae1cd5 100644
--- a/theories/Logic/ClassicalFacts.v
+++ b/theories/Logic/ClassicalFacts.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -117,7 +117,7 @@ Qed.
*)
-Notation Local inhabited A := A (only parsing).
+Local Notation inhabited A := A (only parsing).
Lemma prop_ext_A_eq_A_imp_A :
prop_extensionality -> forall A:Prop, inhabited A -> (A -> A) = A.
@@ -148,7 +148,7 @@ Proof.
case (prop_ext_retract_A_A_imp_A Ext A a); intros g1 g2 g1_o_g2.
exists (fun f => (fun x:A => f (g1 x x)) (g2 (fun x => f (g1 x x)))).
intro f.
- pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1 in |- *.
+ pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1.
rewrite (g1_o_g2 (fun x:A => f (g1 x x))).
reflexivity.
Qed.
@@ -191,13 +191,13 @@ Section Proof_irrelevance_gen.
intros Ext Ind.
case (ext_prop_fixpoint Ext bool true); intros G Gfix.
set (neg := fun b:bool => bool_elim bool false true b).
- generalize (refl_equal (G neg)).
- pattern (G neg) at 1 in |- *.
+ generalize (eq_refl (G neg)).
+ pattern (G neg) at 1.
apply Ind with (b := G neg); intro Heq.
rewrite (bool_elim_redl bool false true).
- change (true = neg true) in |- *; rewrite Heq; apply Gfix.
+ change (true = neg true); rewrite Heq; apply Gfix.
rewrite (bool_elim_redr bool false true).
- change (neg false = false) in |- *; rewrite Heq; symmetry in |- *;
+ change (neg false = false); rewrite Heq; symmetry ;
apply Gfix.
Qed.
@@ -207,9 +207,9 @@ Section Proof_irrelevance_gen.
intros Ext Ind A a1 a2.
set (f := fun b:bool => bool_elim A a1 a2 b).
rewrite (bool_elim_redl A a1 a2).
- change (f true = a2) in |- *.
+ change (f true = a2).
rewrite (bool_elim_redr A a1 a2).
- change (f true = f false) in |- *.
+ change (f true = f false).
rewrite (aux Ext Ind).
reflexivity.
Qed.
@@ -228,9 +228,9 @@ Section Proof_irrelevance_Prop_Ext_CC.
Definition FalseP : BoolP := fun C c1 c2 => c2.
Definition BoolP_elim C c1 c2 (b:BoolP) := b C c1 c2.
Definition BoolP_elim_redl (C:Prop) (c1 c2:C) :
- c1 = BoolP_elim C c1 c2 TrueP := refl_equal c1.
+ c1 = BoolP_elim C c1 c2 TrueP := eq_refl c1.
Definition BoolP_elim_redr (C:Prop) (c1 c2:C) :
- c2 = BoolP_elim C c1 c2 FalseP := refl_equal c2.
+ c2 = BoolP_elim C c1 c2 FalseP := eq_refl c2.
Definition BoolP_dep_induction :=
forall P:BoolP -> Prop, P TrueP -> P FalseP -> forall b:BoolP, P b.
@@ -263,9 +263,9 @@ Section Proof_irrelevance_CIC.
| trueP : boolP
| falseP : boolP.
Definition boolP_elim_redl (C:Prop) (c1 c2:C) :
- c1 = boolP_ind C c1 c2 trueP := refl_equal c1.
+ c1 = boolP_ind C c1 c2 trueP := eq_refl c1.
Definition boolP_elim_redr (C:Prop) (c1 c2:C) :
- c2 = boolP_ind C c1 c2 falseP := refl_equal c2.
+ c2 = boolP_ind C c1 c2 falseP := eq_refl c2.
Scheme boolP_indd := Induction for boolP Sort Prop.
Lemma ext_prop_dep_proof_irrel_cic : prop_extensionality -> proof_irrelevance.
@@ -344,8 +344,8 @@ Section Proof_irrelevance_EM_CC.
Lemma p2p1 : forall A:Prop, A -> b2p (p2b A).
Proof.
- unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
- unfold b2p in |- *; intros.
+ unfold p2b; intro A; apply or_dep_elim with (b := em A);
+ unfold b2p; intros.
apply (or_elim_redl A (~ A) B (fun _ => b1) (fun _ => b2)).
destruct (b H).
Qed.
@@ -353,8 +353,8 @@ Section Proof_irrelevance_EM_CC.
Lemma p2p2 : b1 <> b2 -> forall A:Prop, b2p (p2b A) -> A.
Proof.
intro not_eq_b1_b2.
- unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
- unfold b2p in |- *; intros.
+ unfold p2b; intro A; apply or_dep_elim with (b := em A);
+ unfold b2p; intros.
assumption.
destruct not_eq_b1_b2.
rewrite <- (or_elim_redr A (~ A) B (fun _ => b1) (fun _ => b2)) in H.
@@ -392,9 +392,9 @@ Section Proof_irrelevance_CCI.
Hypothesis em : forall A:Prop, A \/ ~ A.
Definition or_elim_redl (A B C:Prop) (f:A -> C) (g:B -> C)
- (a:A) : f a = or_ind f g (or_introl B a) := refl_equal (f a).
+ (a:A) : f a = or_ind f g (or_introl B a) := eq_refl (f a).
Definition or_elim_redr (A B C:Prop) (f:A -> C) (g:B -> C)
- (b:B) : g b = or_ind f g (or_intror A b) := refl_equal (g b).
+ (b:B) : g b = or_ind f g (or_intror A b) := eq_refl (g b).
Scheme or_indd := Induction for or Sort Prop.
Theorem proof_irrelevance_cci : forall (B:Prop) (b1 b2:B), b1 = b2.