diff options
Diffstat (limited to 'theories/Logic/ChoiceFacts.v')
-rw-r--r-- | theories/Logic/ChoiceFacts.v | 139 |
1 files changed, 139 insertions, 0 deletions
diff --git a/theories/Logic/ChoiceFacts.v b/theories/Logic/ChoiceFacts.v new file mode 100644 index 00000000..a1f4417c --- /dev/null +++ b/theories/Logic/ChoiceFacts.v @@ -0,0 +1,139 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: ChoiceFacts.v,v 1.7.2.1 2004/07/16 19:31:06 herbelin Exp $ i*) + +(* We show that the functional formulation of the axiom of Choice + (usual formulation in type theory) is equivalent to its relational + formulation (only formulation of set theory) + the axiom of + (parametric) definite description (aka axiom of unique choice) *) + +(* This shows that the axiom of choice can be assumed (under its + relational formulation) without known inconsistency with classical logic, + though definite description conflicts with classical logic *) + +Definition RelationalChoice := + forall (A B:Type) (R:A -> B -> Prop), + (forall x:A, exists y : B, R x y) -> + exists R' : A -> B -> Prop, + (forall x:A, + exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')). + +Definition FunctionalChoice := + forall (A B:Type) (R:A -> B -> Prop), + (forall x:A, exists y : B, R x y) -> + exists f : A -> B, (forall x:A, R x (f x)). + +Definition ParamDefiniteDescription := + forall (A B:Type) (R:A -> B -> Prop), + (forall x:A, exists y : B, R x y /\ (forall y':B, R x y' -> y = y')) -> + exists f : A -> B, (forall x:A, R x (f x)). + +Lemma description_rel_choice_imp_funct_choice : + ParamDefiniteDescription -> RelationalChoice -> FunctionalChoice. +intros Descr RelCh. +red in |- *; intros A B R H. +destruct (RelCh A B R H) as [R' H0]. +destruct (Descr A B R') as [f H1]. +intro x. +elim (H0 x); intros y [H2 [H3 H4]]; exists y; split; [ exact H3 | exact H4 ]. +exists f; intro x. +elim (H0 x); intros y [H2 [H3 H4]]. +rewrite <- (H4 (f x) (H1 x)). +exact H2. +Qed. + +Lemma funct_choice_imp_rel_choice : FunctionalChoice -> RelationalChoice. +intros FunCh. +red in |- *; intros A B R H. +destruct (FunCh A B R H) as [f H0]. +exists (fun x y => y = f x). +intro x; exists (f x); split; + [ apply H0 + | split; [ reflexivity | intros y H1; symmetry in |- *; exact H1 ] ]. +Qed. + +Lemma funct_choice_imp_description : + FunctionalChoice -> ParamDefiniteDescription. +intros FunCh. +red in |- *; intros A B R H. +destruct (FunCh A B R) as [f H0]. +(* 1 *) +intro x. +elim (H x); intros y [H0 H1]. +exists y; exact H0. +(* 2 *) +exists f; exact H0. +Qed. + +Theorem FunChoice_Equiv_RelChoice_and_ParamDefinDescr : + FunctionalChoice <-> RelationalChoice /\ ParamDefiniteDescription. +split. +intro H; split; + [ exact (funct_choice_imp_rel_choice H) + | exact (funct_choice_imp_description H) ]. +intros [H H0]; exact (description_rel_choice_imp_funct_choice H0 H). +Qed. + +(* We show that the guarded relational formulation of the axiom of Choice + comes from the non guarded formulation in presence either of the + independance of premises or proof-irrelevance *) + +Definition GuardedRelationalChoice := + forall (A B:Type) (P:A -> Prop) (R:A -> B -> Prop), + (forall x:A, P x -> exists y : B, R x y) -> + exists R' : A -> B -> Prop, + (forall x:A, + P x -> + exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')). + +Definition ProofIrrelevance := forall (A:Prop) (a1 a2:A), a1 = a2. + +Lemma rel_choice_and_proof_irrel_imp_guarded_rel_choice : + RelationalChoice -> ProofIrrelevance -> GuardedRelationalChoice. +Proof. +intros rel_choice proof_irrel. +red in |- *; intros A B P R H. +destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as [R' H0]. +intros [x HPx]. +destruct (H x HPx) as [y HRxy]. +exists y; exact HRxy. +set (R'' := fun (x:A) (y:B) => exists H : P x, R' (existT P x H) y). +exists R''; intros x HPx. +destruct (H0 (existT P x HPx)) as [y [HRxy [HR'xy Huniq]]]. +exists y. split. + exact HRxy. + split. + red in |- *; exists HPx; exact HR'xy. + intros y' HR''xy'. + apply Huniq. + unfold R'' in HR''xy'. + destruct HR''xy' as [H'Px HR'xy']. + rewrite proof_irrel with (a1 := HPx) (a2 := H'Px). + exact HR'xy'. +Qed. + +Definition IndependenceOfPremises := + forall (A:Type) (P:A -> Prop) (Q:Prop), + (Q -> exists x : _, P x) -> exists x : _, Q -> P x. + +Lemma rel_choice_indep_of_premises_imp_guarded_rel_choice : + RelationalChoice -> IndependenceOfPremises -> GuardedRelationalChoice. +Proof. +intros RelCh IndPrem. +red in |- *; intros A B P R H. +destruct (RelCh A B (fun x y => P x -> R x y)) as [R' H0]. + intro x. apply IndPrem. + apply H. + exists R'. + intros x HPx. + destruct (H0 x) as [y [H1 H2]]. + exists y. split. + apply (H1 HPx). + exact H2. +Qed. |