diff options
Diffstat (limited to 'theories/Lists/Streams.v')
-rw-r--r--[-rwxr-xr-x] | theories/Lists/Streams.v | 15 |
1 files changed, 7 insertions, 8 deletions
diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v index 3c433ba2..7bc6a09d 100755..100644 --- a/theories/Lists/Streams.v +++ b/theories/Lists/Streams.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Streams.v,v 1.15.2.1 2004/07/16 19:31:05 herbelin Exp $ i*) +(*i $Id: Streams.v 8642 2006-03-17 10:09:02Z notin $ i*) Set Implicit Arguments. @@ -71,9 +71,8 @@ Qed. (** Extensional Equality between two streams *) -CoInductive EqSt : Stream -> Stream -> Prop := +CoInductive EqSt (s1 s2: Stream) : Prop := eqst : - forall s1 s2:Stream, hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2. (** A coinduction principle *) @@ -140,12 +139,12 @@ Inductive Exists : Stream -> Prop := | Further : forall x:Stream, ~ P x -> Exists (tl x) -> Exists x. i*) -Inductive Exists : Stream -> Prop := - | Here : forall x:Stream, P x -> Exists x - | Further : forall x:Stream, Exists (tl x) -> Exists x. +Inductive Exists ( x: Stream ) : Prop := + | Here : P x -> Exists x + | Further : Exists (tl x) -> Exists x. -CoInductive ForAll : Stream -> Prop := - HereAndFurther : forall x:Stream, P x -> ForAll (tl x) -> ForAll x. +CoInductive ForAll (x: Stream) : Prop := + HereAndFurther : P x -> ForAll (tl x) -> ForAll x. Section Co_Induction_ForAll. |