summaryrefslogtreecommitdiff
path: root/theories/Lists/Streams.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Lists/Streams.v')
-rw-r--r--theories/Lists/Streams.v14
1 files changed, 7 insertions, 7 deletions
diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v
index 7a6f38fc..e1122cf9 100644
--- a/theories/Lists/Streams.v
+++ b/theories/Lists/Streams.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -49,21 +49,21 @@ Qed.
Lemma tl_nth_tl :
forall (n:nat) (s:Stream), tl (Str_nth_tl n s) = Str_nth_tl n (tl s).
Proof.
- simple induction n; simpl in |- *; auto.
+ simple induction n; simpl; auto.
Qed.
Hint Resolve tl_nth_tl: datatypes v62.
Lemma Str_nth_tl_plus :
forall (n m:nat) (s:Stream),
Str_nth_tl n (Str_nth_tl m s) = Str_nth_tl (n + m) s.
-simple induction n; simpl in |- *; intros; auto with datatypes.
+simple induction n; simpl; intros; auto with datatypes.
rewrite <- H.
rewrite tl_nth_tl; trivial with datatypes.
Qed.
Lemma Str_nth_plus :
forall (n m:nat) (s:Stream), Str_nth n (Str_nth_tl m s) = Str_nth (n + m) s.
-intros; unfold Str_nth in |- *; rewrite Str_nth_tl_plus;
+intros; unfold Str_nth; rewrite Str_nth_tl_plus;
trivial with datatypes.
Qed.
@@ -89,7 +89,7 @@ Qed.
Theorem sym_EqSt : forall s1 s2:Stream, EqSt s1 s2 -> EqSt s2 s1.
coinduction Eq_sym.
-case H; intros; symmetry in |- *; assumption.
+case H; intros; symmetry ; assumption.
case H; intros; assumption.
Qed.
@@ -110,10 +110,10 @@ Qed.
Theorem eqst_ntheq :
forall (n:nat) (s1 s2:Stream), EqSt s1 s2 -> Str_nth n s1 = Str_nth n s2.
-unfold Str_nth in |- *; simple induction n.
+unfold Str_nth; simple induction n.
intros s1 s2 H; case H; trivial with datatypes.
intros m hypind.
-simpl in |- *.
+simpl.
intros s1 s2 H.
apply hypind.
case H; trivial with datatypes.