diff options
Diffstat (limited to 'theories/Lists/Streams.v')
-rw-r--r-- | theories/Lists/Streams.v | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v index 7a6f38fc..e1122cf9 100644 --- a/theories/Lists/Streams.v +++ b/theories/Lists/Streams.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -49,21 +49,21 @@ Qed. Lemma tl_nth_tl : forall (n:nat) (s:Stream), tl (Str_nth_tl n s) = Str_nth_tl n (tl s). Proof. - simple induction n; simpl in |- *; auto. + simple induction n; simpl; auto. Qed. Hint Resolve tl_nth_tl: datatypes v62. Lemma Str_nth_tl_plus : forall (n m:nat) (s:Stream), Str_nth_tl n (Str_nth_tl m s) = Str_nth_tl (n + m) s. -simple induction n; simpl in |- *; intros; auto with datatypes. +simple induction n; simpl; intros; auto with datatypes. rewrite <- H. rewrite tl_nth_tl; trivial with datatypes. Qed. Lemma Str_nth_plus : forall (n m:nat) (s:Stream), Str_nth n (Str_nth_tl m s) = Str_nth (n + m) s. -intros; unfold Str_nth in |- *; rewrite Str_nth_tl_plus; +intros; unfold Str_nth; rewrite Str_nth_tl_plus; trivial with datatypes. Qed. @@ -89,7 +89,7 @@ Qed. Theorem sym_EqSt : forall s1 s2:Stream, EqSt s1 s2 -> EqSt s2 s1. coinduction Eq_sym. -case H; intros; symmetry in |- *; assumption. +case H; intros; symmetry ; assumption. case H; intros; assumption. Qed. @@ -110,10 +110,10 @@ Qed. Theorem eqst_ntheq : forall (n:nat) (s1 s2:Stream), EqSt s1 s2 -> Str_nth n s1 = Str_nth n s2. -unfold Str_nth in |- *; simple induction n. +unfold Str_nth; simple induction n. intros s1 s2 H; case H; trivial with datatypes. intros m hypind. -simpl in |- *. +simpl. intros s1 s2 H. apply hypind. case H; trivial with datatypes. |