summaryrefslogtreecommitdiff
path: root/theories/Lists/ListSet.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Lists/ListSet.v')
-rw-r--r--theories/Lists/ListSet.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/Lists/ListSet.v b/theories/Lists/ListSet.v
index 4e009ed5..021a64c1 100644
--- a/theories/Lists/ListSet.v
+++ b/theories/Lists/ListSet.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ListSet.v 6844 2005-03-16 13:09:55Z herbelin $ i*)
+(*i $Id: ListSet.v 10616 2008-03-04 17:33:35Z letouzey $ i*)
(** A Library for finite sets, implemented as lists *)
@@ -20,7 +20,7 @@ Set Implicit Arguments.
Section first_definitions.
- Variable A : Set.
+ Variable A : Type.
Hypothesis Aeq_dec : forall x y:A, {x = y} + {x <> y}.
Definition set := list A.
@@ -100,7 +100,7 @@ Section first_definitions.
Qed.
Lemma set_mem_ind :
- forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set),
+ forall (B:Type) (P:B -> Prop) (y z:B) (a:A) (x:set),
(set_In a x -> P y) -> P z -> P (if set_mem a x then y else z).
Proof.
@@ -110,7 +110,7 @@ Section first_definitions.
Qed.
Lemma set_mem_ind2 :
- forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set),
+ forall (B:Type) (P:B -> Prop) (y z:B) (a:A) (x:set),
(set_In a x -> P y) ->
(~ set_In a x -> P z) -> P (if set_mem a x then y else z).
@@ -373,7 +373,7 @@ End first_definitions.
Section other_definitions.
- Variables A B : Set.
+ Variables A B : Type.
Definition set_prod : set A -> set B -> set (A * B) :=
list_prod (A:=A) (B:=B).