summaryrefslogtreecommitdiff
path: root/theories/Lists/List.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Lists/List.v')
-rw-r--r--theories/Lists/List.v1202
1 files changed, 566 insertions, 636 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index c015854e..f42dc7fa 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: List.v 12446 2009-10-29 21:43:06Z glondu $ i*)
+(*i $Id$ i*)
Require Import Le Gt Minus Min Bool.
@@ -17,78 +17,47 @@ Set Implicit Arguments.
(** * Basics: definition of polymorphic lists and some operations *)
(******************************************************************)
-(** ** Definitions *)
+(** The definition of [list] is now in [Init/Datatypes],
+ as well as the definitions of [length] and [app] *)
+
+Open Scope list_scope.
Section Lists.
Variable A : Type.
- Inductive list : Type :=
- | nil : list
- | cons : A -> list -> list.
-
- Infix "::" := cons (at level 60, right associativity) : list_scope.
+ (** Head and tail *)
- Open Scope list_scope.
+ Definition hd (default:A) (l:list A) :=
+ match l with
+ | nil => default
+ | x :: _ => x
+ end.
- (** Head and tail *)
- Definition head (l:list) :=
+ Definition hd_error (l:list A) :=
match l with
| nil => error
| x :: _ => value x
end.
- Definition hd (default:A) (l:list) :=
- match l with
- | nil => default
- | x :: _ => x
- end.
-
- Definition tail (l:list) : list :=
+ Definition tl (l:list A) :=
match l with
| nil => nil
| a :: m => m
end.
- (** Length of lists *)
- Fixpoint length (l:list) : nat :=
- match l with
- | nil => 0
- | _ :: m => S (length m)
- end.
-
(** The [In] predicate *)
- Fixpoint In (a:A) (l:list) {struct l} : Prop :=
+ Fixpoint In (a:A) (l:list A) : Prop :=
match l with
| nil => False
| b :: m => b = a \/ In a m
end.
-
- (** Concatenation of two lists *)
- Fixpoint app (l m:list) {struct l} : list :=
- match l with
- | nil => m
- | a :: l1 => a :: app l1 m
- end.
-
- Infix "++" := app (right associativity, at level 60) : list_scope.
-
End Lists.
-(** Exporting list notations and tactics *)
-
-Implicit Arguments nil [A].
-Infix "::" := cons (at level 60, right associativity) : list_scope.
-Infix "++" := app (right associativity, at level 60) : list_scope.
-
-Open Scope list_scope.
-
-Delimit Scope list_scope with list.
-
-Bind Scope list_scope with list.
-
-Arguments Scope list [type_scope].
+(* Keep these notations local to prevent conflicting notations *)
+Local Notation "[ ]" := nil : list_scope.
+Local Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..) : list_scope.
(** ** Facts about lists *)
@@ -100,164 +69,172 @@ Section Facts.
(** *** Genereric facts *)
(** Discrimination *)
- Theorem nil_cons : forall (x:A) (l:list A), nil <> x :: l.
- Proof.
+ Theorem nil_cons : forall (x:A) (l:list A), [] <> x :: l.
+ Proof.
intros; discriminate.
Qed.
(** Destruction *)
- Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = nil}.
+ Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = []}.
Proof.
- induction l as [|a tl].
+ induction l as [|a tail].
right; reflexivity.
- left; exists a; exists tl; reflexivity.
+ left; exists a, tail; reflexivity.
Qed.
-
+
(** *** Head and tail *)
-
- Theorem head_nil : head (@nil A) = None.
+
+ Theorem hd_error_nil : hd_error (@nil A) = None.
Proof.
simpl; reflexivity.
Qed.
- Theorem head_cons : forall (l : list A) (x : A), head (x::l) = Some x.
+ Theorem hd_error_cons : forall (l : list A) (x : A), hd_error (x::l) = Some x.
Proof.
intros; simpl; reflexivity.
Qed.
(************************)
- (** *** Facts about [In] *)
+ (** *** Facts about [In] *)
(************************)
(** Characterization of [In] *)
-
+
Theorem in_eq : forall (a:A) (l:list A), In a (a :: l).
- Proof.
- simpl in |- *; auto.
+ Proof.
+ simpl; auto.
Qed.
-
+
Theorem in_cons : forall (a b:A) (l:list A), In b l -> In b (a :: l).
- Proof.
- simpl in |- *; auto.
+ Proof.
+ simpl; auto.
Qed.
- Theorem in_nil : forall a:A, ~ In a nil.
+ Theorem in_nil : forall a:A, ~ In a [].
Proof.
- unfold not in |- *; intros a H; inversion_clear H.
+ unfold not; intros a H; inversion_clear H.
Qed.
- Lemma In_split : forall x (l:list A), In x l -> exists l1, exists l2, l = l1++x::l2.
+ Theorem in_split : forall x (l:list A), In x l -> exists l1, exists l2, l = l1++x::l2.
Proof.
induction l; simpl; destruct 1.
subst a; auto.
- exists (@nil A); exists l; auto.
+ exists [], l; auto.
destruct (IHl H) as (l1,(l2,H0)).
- exists (a::l1); exists l2; simpl; f_equal; auto.
+ exists (a::l1), l2; simpl; f_equal; auto.
Qed.
(** Inversion *)
- Theorem in_inv : forall (a b:A) (l:list A), In b (a :: l) -> a = b \/ In b l.
+ Lemma in_inv : forall (a b:A) (l:list A), In b (a :: l) -> a = b \/ In b l.
Proof.
intros a b l H; inversion_clear H; auto.
Qed.
(** Decidability of [In] *)
- Theorem In_dec :
+ Theorem in_dec :
(forall x y:A, {x = y} + {x <> y}) ->
forall (a:A) (l:list A), {In a l} + {~ In a l}.
Proof.
intro H; induction l as [| a0 l IHl].
right; apply in_nil.
- destruct (H a0 a); simpl in |- *; auto.
- destruct IHl; simpl in |- *; auto.
- right; unfold not in |- *; intros [Hc1| Hc2]; auto.
+ destruct (H a0 a); simpl; auto.
+ destruct IHl; simpl; auto.
+ right; unfold not; intros [Hc1| Hc2]; auto.
Defined.
- (*************************)
+ (**************************)
(** *** Facts about [app] *)
- (*************************)
+ (**************************)
(** Discrimination *)
- Theorem app_cons_not_nil : forall (x y:list A) (a:A), nil <> x ++ a :: y.
+ Theorem app_cons_not_nil : forall (x y:list A) (a:A), [] <> x ++ a :: y.
Proof.
- unfold not in |- *.
- destruct x as [| a l]; simpl in |- *; intros.
+ unfold not.
+ destruct x as [| a l]; simpl; intros.
discriminate H.
discriminate H.
Qed.
(** Concat with [nil] *)
+ Theorem app_nil_l : forall l:list A, [] ++ l = l.
+ Proof.
+ reflexivity.
+ Qed.
- Theorem app_nil_end : forall l:list A, l = l ++ nil.
- Proof.
- induction l; simpl in |- *; auto.
- rewrite <- IHl; auto.
+ Theorem app_nil_r : forall l:list A, l ++ [] = l.
+ Proof.
+ induction l; simpl; f_equal; auto.
Qed.
+ (* begin hide *)
+ (* Deprecated *)
+ Theorem app_nil_end : forall (l:list A), l = l ++ [].
+ Proof. symmetry; apply app_nil_r. Qed.
+ (* end hide *)
+
(** [app] is associative *)
- Theorem app_ass : forall l m n:list A, (l ++ m) ++ n = l ++ m ++ n.
- Proof.
- intros. induction l; simpl in |- *; auto.
- now_show (a :: (l ++ m) ++ n = a :: l ++ m ++ n).
- rewrite <- IHl; auto.
+ Theorem app_assoc : forall l m n:list A, l ++ m ++ n = (l ++ m) ++ n.
+ Proof.
+ intros l m n; induction l; simpl; f_equal; auto.
Qed.
- Hint Resolve app_ass.
- Theorem ass_app : forall l m n:list A, l ++ m ++ n = (l ++ m) ++ n.
- Proof.
- auto using app_ass.
+ (* begin hide *)
+ (* Deprecated *)
+ Theorem app_assoc_reverse : forall l m n:list A, (l ++ m) ++ n = l ++ m ++ n.
+ Proof.
+ auto using app_assoc.
Qed.
+ Hint Resolve app_assoc_reverse.
+ (* end hide *)
- (** [app] commutes with [cons] *)
+ (** [app] commutes with [cons] *)
Theorem app_comm_cons : forall (x y:list A) (a:A), a :: (x ++ y) = (a :: x) ++ y.
Proof.
auto.
Qed.
+ (** Facts deduced from the result of a concatenation *)
-
- (** Facts deduced from the result of a concatenation *)
-
- Theorem app_eq_nil : forall l l':list A, l ++ l' = nil -> l = nil /\ l' = nil.
+ Theorem app_eq_nil : forall l l':list A, l ++ l' = [] -> l = [] /\ l' = [].
Proof.
- destruct l as [| x l]; destruct l' as [| y l']; simpl in |- *; auto.
+ destruct l as [| x l]; destruct l' as [| y l']; simpl; auto.
intro; discriminate.
intros H; discriminate H.
Qed.
Theorem app_eq_unit :
forall (x y:list A) (a:A),
- x ++ y = a :: nil -> x = nil /\ y = a :: nil \/ x = a :: nil /\ y = nil.
+ x ++ y = [a] -> x = [] /\ y = [a] \/ x = [a] /\ y = [].
Proof.
destruct x as [| a l]; [ destruct y as [| a l] | destruct y as [| a0 l0] ];
- simpl in |- *.
+ simpl.
intros a H; discriminate H.
left; split; auto.
right; split; auto.
generalize H.
- generalize (app_nil_end l); intros E.
- rewrite <- E; auto.
+ generalize (app_nil_r l); intros E.
+ rewrite -> E; auto.
intros.
injection H.
intro.
- cut (nil = l ++ a0 :: l0); auto.
+ cut ([] = l ++ a0 :: l0); auto.
intro.
generalize (app_cons_not_nil _ _ _ H1); intro.
elim H2.
Qed.
Lemma app_inj_tail :
- forall (x y:list A) (a b:A), x ++ a :: nil = y ++ b :: nil -> x = y /\ a = b.
+ forall (x y:list A) (a b:A), x ++ [a] = y ++ [b] -> x = y /\ a = b.
Proof.
induction x as [| x l IHl];
- [ destruct y as [| a l] | destruct y as [| a l0] ];
- simpl in |- *; auto.
+ [ destruct y as [| a l] | destruct y as [| a l0] ];
+ simpl; auto.
intros a b H.
injection H.
auto.
@@ -266,12 +243,12 @@ Section Facts.
generalize (app_cons_not_nil _ _ _ H0); destruct 1.
intros a b H.
injection H; intros.
- cut (nil = l ++ a :: nil); auto.
+ cut ([] = l ++ [a]); auto.
intro.
generalize (app_cons_not_nil _ _ _ H2); destruct 1.
intros a0 b H.
injection H; intros.
- destruct (IHl l0 a0 b H0).
+ destruct (IHl l0 a0 b H0).
split; auto.
rewrite <- H1; rewrite <- H2; reflexivity.
Qed.
@@ -285,9 +262,9 @@ Section Facts.
Qed.
Lemma in_app_or : forall (l m:list A) (a:A), In a (l ++ m) -> In a l \/ In a m.
- Proof.
+ Proof.
intros l m a.
- elim l; simpl in |- *; auto.
+ elim l; simpl; auto.
intros a0 y H H0.
now_show ((a0 = a \/ In a y) \/ In a m).
elim H0; auto.
@@ -297,9 +274,9 @@ Section Facts.
Qed.
Lemma in_or_app : forall (l m:list A) (a:A), In a l \/ In a m -> In a (l ++ m).
- Proof.
+ Proof.
intros l m a.
- elim l; simpl in |- *; intro H.
+ elim l; simpl; intro H.
now_show (In a m).
elim H; auto; intro H0.
now_show (In a m).
@@ -311,18 +288,23 @@ Section Facts.
now_show (H = a \/ In a (y ++ m)).
elim H2; auto.
Qed.
-
+
+ Lemma in_app_iff : forall l l' (a:A), In a (l++l') <-> In a l \/ In a l'.
+ Proof.
+ split; auto using in_app_or, in_or_app.
+ Qed.
+
Lemma app_inv_head:
- forall l l1 l2 : list A, l ++ l1 = l ++ l2 -> l1 = l2.
+ forall l l1 l2 : list A, l ++ l1 = l ++ l2 -> l1 = l2.
Proof.
induction l; simpl; auto; injection 1; auto.
Qed.
-
+
Lemma app_inv_tail:
- forall l l1 l2 : list A, l1 ++ l = l2 ++ l -> l1 = l2.
+ forall l l1 l2 : list A, l1 ++ l = l2 ++ l -> l1 = l2.
Proof.
intros l l1 l2; revert l1 l2 l.
- induction l1 as [ | x1 l1]; destruct l2 as [ | x2 l2];
+ induction l1 as [ | x1 l1]; destruct l2 as [ | x2 l2];
simpl; auto; intros l H.
absurd (length (x2 :: l2 ++ l) <= length l).
simpl; rewrite app_length; auto with arith.
@@ -335,10 +317,10 @@ Section Facts.
End Facts.
-Hint Resolve app_nil_end ass_app app_ass: datatypes v62.
+Hint Resolve app_assoc app_assoc_reverse: datatypes v62.
Hint Resolve app_comm_cons app_cons_not_nil: datatypes v62.
Hint Immediate app_eq_nil: datatypes v62.
-Hint Resolve app_eq_unit app_inj_tail: datatypes v62.
+Hint Resolve app_eq_unit app_inj_tail: datatypes v62.
Hint Resolve in_eq in_cons in_inv in_nil in_app_or in_or_app: datatypes v62.
@@ -359,7 +341,7 @@ Section Elts.
match n, l with
| O, x :: l' => x
| O, other => default
- | S m, nil => default
+ | S m, [] => default
| S m, x :: t => nth m t default
end.
@@ -367,26 +349,26 @@ Section Elts.
match n, l with
| O, x :: l' => true
| O, other => false
- | S m, nil => false
+ | S m, [] => false
| S m, x :: t => nth_ok m t default
end.
Lemma nth_in_or_default :
forall (n:nat) (l:list A) (d:A), {In (nth n l d) l} + {nth n l d = d}.
(* Realizer nth_ok. Program_all. *)
- Proof.
+ Proof.
intros n l d; generalize n; induction l; intro n0.
right; case n0; trivial.
- case n0; simpl in |- *.
+ case n0; simpl.
auto.
- intro n1; elim (IHl n1); auto.
+ intro n1; elim (IHl n1); auto.
Qed.
Lemma nth_S_cons :
forall (n:nat) (l:list A) (d a:A),
In (nth n l d) l -> In (nth (S n) (a :: l) d) (a :: l).
- Proof.
- simpl in |- *; auto.
+ Proof.
+ simpl; auto.
Qed.
Fixpoint nth_error (l:list A) (n:nat) {struct n} : Exc A :=
@@ -402,13 +384,19 @@ Section Elts.
| None => default
end.
+ Lemma nth_default_eq :
+ forall n l (d:A), nth_default d l n = nth n l d.
+ Proof.
+ unfold nth_default; induction n; intros [ | ] ?; simpl; auto.
+ Qed.
+
Lemma nth_In :
forall (n:nat) (l:list A) (d:A), n < length l -> In (nth n l d) l.
Proof.
- unfold lt in |- *; induction n as [| n hn]; simpl in |- *.
- destruct l; simpl in |- *; [ inversion 2 | auto ].
- destruct l as [| a l hl]; simpl in |- *.
+ unfold lt; induction n as [| n hn]; simpl.
+ destruct l; simpl; [ inversion 2 | auto ].
+ destruct l as [| a l hl]; simpl.
inversion 2.
intros d ie; right; apply hn; auto with arith.
Qed.
@@ -420,7 +408,7 @@ Section Elts.
apply IHl; auto with arith.
Qed.
- Lemma nth_indep :
+ Lemma nth_indep :
forall l n d d', n < length l -> nth n l d = nth n l d'.
Proof.
induction l; simpl; intros; auto.
@@ -428,7 +416,7 @@ Section Elts.
destruct n; simpl; auto with arith.
Qed.
- Lemma app_nth1 :
+ Lemma app_nth1 :
forall l l' d n, n < length l -> nth n (l++l') d = nth n l d.
Proof.
induction l.
@@ -439,7 +427,7 @@ Section Elts.
intros; rewrite IHl; auto with arith.
Qed.
- Lemma app_nth2 :
+ Lemma app_nth2 :
forall l l' d n, n >= length l -> nth n (l++l') d = nth (n-length l) l' d.
Proof.
induction l.
@@ -461,53 +449,49 @@ Section Elts.
(** ** Remove *)
(*****************)
- Section Remove.
+ Hypothesis eq_dec : forall x y : A, {x = y}+{x <> y}.
- Hypothesis eq_dec : forall x y : A, {x = y}+{x <> y}.
-
- Fixpoint remove (x : A) (l : list A){struct l} : list A :=
- match l with
- | nil => nil
- | y::tl => if (eq_dec x y) then remove x tl else y::(remove x tl)
- end.
-
- Theorem remove_In : forall (l : list A) (x : A), ~ In x (remove x l).
- Proof.
- induction l as [|x l]; auto.
- intro y; simpl; destruct (eq_dec y x) as [yeqx | yneqx].
- apply IHl.
- unfold not; intro HF; simpl in HF; destruct HF; auto.
- apply (IHl y); assumption.
- Qed.
-
- End Remove.
+ Fixpoint remove (x : A) (l : list A) : list A :=
+ match l with
+ | [] => []
+ | y::tl => if (eq_dec x y) then remove x tl else y::(remove x tl)
+ end.
+
+ Theorem remove_In : forall (l : list A) (x : A), ~ In x (remove x l).
+ Proof.
+ induction l as [|x l]; auto.
+ intro y; simpl; destruct (eq_dec y x) as [yeqx | yneqx].
+ apply IHl.
+ unfold not; intro HF; simpl in HF; destruct HF; auto.
+ apply (IHl y); assumption.
+ Qed.
(******************************)
(** ** Last element of a list *)
(******************************)
- (** [last l d] returns the last element of the list [l],
+ (** [last l d] returns the last element of the list [l],
or the default value [d] if [l] is empty. *)
- Fixpoint last (l:list A) (d:A) {struct l} : A :=
- match l with
- | nil => d
- | a :: nil => a
+ Fixpoint last (l:list A) (d:A) : A :=
+ match l with
+ | [] => d
+ | [a] => a
| a :: l => last l d
end.
(** [removelast l] remove the last element of [l] *)
- Fixpoint removelast (l:list A) {struct l} : list A :=
- match l with
- | nil => nil
- | a :: nil => nil
+ Fixpoint removelast (l:list A) : list A :=
+ match l with
+ | [] => []
+ | [a] => []
| a :: l => a :: removelast l
end.
-
- Lemma app_removelast_last :
- forall l d, l<>nil -> l = removelast l ++ (last l d :: nil).
+
+ Lemma app_removelast_last :
+ forall l d, l <> [] -> l = removelast l ++ [last l d].
Proof.
induction l.
destruct 1; auto.
@@ -515,27 +499,27 @@ Section Elts.
destruct l; auto.
pattern (a0::l) at 1; rewrite IHl with d; auto; discriminate.
Qed.
-
- Lemma exists_last :
- forall l, l<>nil -> { l' : (list A) & { a : A | l = l'++a::nil}}.
- Proof.
+
+ Lemma exists_last :
+ forall l, l <> [] -> { l' : (list A) & { a : A | l = l' ++ [a]}}.
+ Proof.
induction l.
destruct 1; auto.
intros _.
destruct l.
- exists (@nil A); exists a; auto.
+ exists [], a; auto.
destruct IHl as [l' (a',H)]; try discriminate.
rewrite H.
- exists (a::l'); exists a'; auto.
+ exists (a::l'), a'; auto.
Qed.
- Lemma removelast_app :
- forall l l', l' <> nil -> removelast (l++l') = l ++ removelast l'.
+ Lemma removelast_app :
+ forall l l', l' <> [] -> removelast (l++l') = l ++ removelast l'.
Proof.
induction l.
simpl; auto.
simpl; intros.
- assert (l++l' <> nil).
+ assert (l++l' <> []).
destruct l.
simpl; auto.
simpl; discriminate.
@@ -543,32 +527,30 @@ Section Elts.
destruct (l++l'); [elim H0; auto|f_equal; auto].
Qed.
-
+
(****************************************)
(** ** Counting occurences of a element *)
(****************************************)
- Hypotheses eqA_dec : forall x y : A, {x = y}+{x <> y}.
-
- Fixpoint count_occ (l : list A) (x : A){struct l} : nat :=
- match l with
- | nil => 0
- | y :: tl =>
- let n := count_occ tl x in
- if eqA_dec y x then S n else n
+ Fixpoint count_occ (l : list A) (x : A) : nat :=
+ match l with
+ | [] => 0
+ | y :: tl =>
+ let n := count_occ tl x in
+ if eq_dec y x then S n else n
end.
-
+
(** Compatibility of count_occ with operations on list *)
Theorem count_occ_In : forall (l : list A) (x : A), In x l <-> count_occ l x > 0.
Proof.
induction l as [|y l].
simpl; intros; split; [destruct 1 | apply gt_irrefl].
- simpl. intro x; destruct (eqA_dec y x) as [Heq|Hneq].
- rewrite Heq; intuition.
+ simpl. intro x; destruct (eq_dec y x) as [Heq|Hneq].
+ rewrite Heq; intuition.
pose (IHl x). intuition.
Qed.
-
- Theorem count_occ_inv_nil : forall (l : list A), (forall x:A, count_occ l x = 0) <-> l = nil.
+
+ Theorem count_occ_inv_nil : forall (l : list A), (forall x:A, count_occ l x = 0) <-> l = [].
Proof.
split.
(* Case -> *)
@@ -578,14 +560,14 @@ Section Elts.
elim (O_S (count_occ l x)).
apply sym_eq.
generalize (H x).
- simpl. destruct (eqA_dec x x) as [|HF].
+ simpl. destruct (eq_dec x x) as [|HF].
trivial.
elim HF; reflexivity.
(* Case <- *)
intro H; rewrite H; simpl; reflexivity.
Qed.
-
- Lemma count_occ_nil : forall (x : A), count_occ nil x = 0.
+
+ Lemma count_occ_nil : forall (x : A), count_occ [] x = 0.
Proof.
intro x; simpl; reflexivity.
Qed.
@@ -593,13 +575,13 @@ Section Elts.
Lemma count_occ_cons_eq : forall (l : list A) (x y : A), x = y -> count_occ (x::l) y = S (count_occ l y).
Proof.
intros l x y H; simpl.
- destruct (eqA_dec x y); [reflexivity | contradiction].
+ destruct (eq_dec x y); [reflexivity | contradiction].
Qed.
-
+
Lemma count_occ_cons_neq : forall (l : list A) (x y : A), x <> y -> count_occ (x::l) y = count_occ l y.
Proof.
intros l x y H; simpl.
- destruct (eqA_dec x y); [contradiction | reflexivity].
+ destruct (eq_dec x y); [contradiction | reflexivity].
Qed.
End Elts.
@@ -620,38 +602,38 @@ Section ListOps.
Fixpoint rev (l:list A) : list A :=
match l with
- | nil => nil
- | x :: l' => rev l' ++ x :: nil
+ | [] => []
+ | x :: l' => rev l' ++ [x]
end.
- Lemma distr_rev : forall x y:list A, rev (x ++ y) = rev y ++ rev x.
+ Lemma rev_app_distr : forall x y:list A, rev (x ++ y) = rev y ++ rev x.
Proof.
induction x as [| a l IHl].
destruct y as [| a l].
- simpl in |- *.
+ simpl.
auto.
- simpl in |- *.
- apply app_nil_end; auto.
+ simpl.
+ rewrite app_nil_r; auto.
intro y.
- simpl in |- *.
+ simpl.
rewrite (IHl y).
- apply (app_ass (rev y) (rev l) (a :: nil)).
+ rewrite app_assoc; trivial.
Qed.
- Remark rev_unit : forall (l:list A) (a:A), rev (l ++ a :: nil) = a :: rev l.
+ Remark rev_unit : forall (l:list A) (a:A), rev (l ++ [a]) = a :: rev l.
Proof.
intros.
- apply (distr_rev l (a :: nil)); simpl in |- *; auto.
+ apply (rev_app_distr l [a]); simpl; auto.
Qed.
Lemma rev_involutive : forall l:list A, rev (rev l) = l.
Proof.
induction l as [| a l IHl].
- simpl in |- *; auto.
+ simpl; auto.
- simpl in |- *.
+ simpl.
rewrite (rev_unit (rev l) a).
rewrite IHl; auto.
Qed.
@@ -659,7 +641,7 @@ Section ListOps.
(** Compatibility with other operations *)
- Lemma In_rev : forall l x, In x l <-> In x (rev l).
+ Lemma in_rev : forall l x, In x l <-> In x (rev l).
Proof.
induction l.
simpl; intuition.
@@ -681,7 +663,7 @@ Section ListOps.
elim (length l); simpl; auto.
Qed.
- Lemma rev_nth : forall l d n, n < length l ->
+ Lemma rev_nth : forall l d n, n < length l ->
nth n (rev l) d = nth (length l - S n) l d.
Proof.
induction l.
@@ -704,309 +686,77 @@ Section ListOps.
Qed.
- (** An alternative tail-recursive definition for reverse *)
+ (** An alternative tail-recursive definition for reverse *)
- Fixpoint rev_append (l l': list A) {struct l} : list A :=
- match l with
- | nil => l'
+ Fixpoint rev_append (l l': list A) : list A :=
+ match l with
+ | [] => l'
| a::l => rev_append l (a::l')
end.
- Definition rev' l : list A := rev_append l nil.
-
- Notation rev_acc := rev_append (only parsing).
+ Definition rev' l : list A := rev_append l [].
- Lemma rev_append_rev : forall l l', rev_acc l l' = rev l ++ l'.
+ Lemma rev_append_rev : forall l l', rev_append l l' = rev l ++ l'.
Proof.
induction l; simpl; auto; intros.
- rewrite <- ass_app; firstorder.
+ rewrite <- app_assoc; firstorder.
Qed.
- Notation rev_acc_rev := rev_append_rev (only parsing).
-
- Lemma rev_alt : forall l, rev l = rev_append l nil.
+ Lemma rev_alt : forall l, rev l = rev_append l [].
Proof.
intros; rewrite rev_append_rev.
- apply app_nil_end.
+ rewrite app_nil_r; trivial.
Qed.
(*********************************************)
(** Reverse Induction Principle on Lists *)
(*********************************************)
-
+
Section Reverse_Induction.
-
- Unset Implicit Arguments.
-
+
Lemma rev_list_ind :
forall P:list A-> Prop,
- P nil ->
+ P [] ->
(forall (a:A) (l:list A), P (rev l) -> P (rev (a :: l))) ->
forall l:list A, P (rev l).
Proof.
induction l; auto.
Qed.
- Set Implicit Arguments.
-
+
Theorem rev_ind :
forall P:list A -> Prop,
- P nil ->
- (forall (x:A) (l:list A), P l -> P (l ++ x :: nil)) -> forall l:list A, P l.
+ P [] ->
+ (forall (x:A) (l:list A), P l -> P (l ++ [x])) -> forall l:list A, P l.
Proof.
intros.
generalize (rev_involutive l).
intros E; rewrite <- E.
apply (rev_list_ind P).
auto.
-
- simpl in |- *.
+
+ simpl.
intros.
apply (H0 a (rev l0)).
auto.
Qed.
-
- End Reverse_Induction.
-
-
-
- (***********************************)
- (** ** Lists modulo permutation *)
- (***********************************)
-
- Section Permutation.
-
- Inductive Permutation : list A -> list A -> Prop :=
- | perm_nil: Permutation nil nil
- | perm_skip: forall (x:A) (l l':list A), Permutation l l' -> Permutation (cons x l) (cons x l')
- | perm_swap: forall (x y:A) (l:list A), Permutation (cons y (cons x l)) (cons x (cons y l))
- | perm_trans: forall (l l' l'':list A), Permutation l l' -> Permutation l' l'' -> Permutation l l''.
-
- Hint Constructors Permutation.
-
- (** Some facts about [Permutation] *)
-
- Theorem Permutation_nil : forall (l : list A), Permutation nil l -> l = nil.
- Proof.
- intros l HF.
- set (m:=@nil A) in HF; assert (m = nil); [reflexivity|idtac]; clearbody m.
- induction HF; try elim (nil_cons (sym_eq H)); auto.
- Qed.
-
- Theorem Permutation_nil_cons : forall (l : list A) (x : A), ~ Permutation nil (x::l).
- Proof.
- unfold not; intros l x HF.
- elim (@nil_cons A x l). apply sym_eq. exact (Permutation_nil HF).
- Qed.
-
- (** Permutation over lists is a equivalence relation *)
-
- Theorem Permutation_refl : forall l : list A, Permutation l l.
- Proof.
- induction l; constructor. exact IHl.
- Qed.
-
- Theorem Permutation_sym : forall l l' : list A, Permutation l l' -> Permutation l' l.
- Proof.
- intros l l' Hperm; induction Hperm; auto.
- apply perm_trans with (l':=l'); assumption.
- Qed.
-
- Theorem Permutation_trans : forall l l' l'' : list A, Permutation l l' -> Permutation l' l'' -> Permutation l l''.
- Proof.
- exact perm_trans.
- Qed.
-
- Hint Resolve Permutation_refl Permutation_sym Permutation_trans.
-
- (** Compatibility with others operations on lists *)
-
- Theorem Permutation_in : forall (l l' : list A) (x : A), Permutation l l' -> In x l -> In x l'.
- Proof.
- intros l l' x Hperm; induction Hperm; simpl; tauto.
- Qed.
-
- Lemma Permutation_app_tail : forall (l l' tl : list A), Permutation l l' -> Permutation (l++tl) (l'++tl).
- Proof.
- intros l l' tl Hperm; induction Hperm as [|x l l'|x y l|l l' l'']; simpl; auto.
- eapply Permutation_trans with (l':=l'++tl); trivial.
- Qed.
-
- Lemma Permutation_app_head : forall (l tl tl' : list A), Permutation tl tl' -> Permutation (l++tl) (l++tl').
- Proof.
- intros l tl tl' Hperm; induction l; [trivial | repeat rewrite <- app_comm_cons; constructor; assumption].
- Qed.
-
- Theorem Permutation_app : forall (l m l' m' : list A), Permutation l l' -> Permutation m m' -> Permutation (l++m) (l'++m').
- Proof.
- intros l m l' m' Hpermll' Hpermmm'; induction Hpermll' as [|x l l'|x y l|l l' l'']; repeat rewrite <- app_comm_cons; auto.
- apply Permutation_trans with (l' := (x :: y :: l ++ m));
- [idtac | repeat rewrite app_comm_cons; apply Permutation_app_head]; trivial.
- apply Permutation_trans with (l' := (l' ++ m')); try assumption.
- apply Permutation_app_tail; assumption.
- Qed.
-
- Theorem Permutation_app_swap : forall (l l' : list A), Permutation (l++l') (l'++l).
- Proof.
- induction l as [|x l].
- simpl; intro l'; rewrite <- app_nil_end; trivial.
- induction l' as [|y l'].
- simpl; rewrite <- app_nil_end; trivial.
- simpl; apply Permutation_trans with (l' := x :: y :: l' ++ l).
- constructor; rewrite app_comm_cons; apply IHl.
- apply Permutation_trans with (l' := y :: x :: l' ++ l); constructor.
- apply Permutation_trans with (l' := x :: l ++ l'); auto.
- Qed.
-
- Theorem Permutation_cons_app : forall (l l1 l2:list A) a,
- Permutation l (l1 ++ l2) -> Permutation (a :: l) (l1 ++ a :: l2).
- Proof.
- intros l l1; revert l.
- induction l1.
- simpl.
- intros; apply perm_skip; auto.
- simpl; intros.
- apply perm_trans with (a0::a::l1++l2).
- apply perm_skip; auto.
- apply perm_trans with (a::a0::l1++l2).
- apply perm_swap; auto.
- apply perm_skip; auto.
- Qed.
- Hint Resolve Permutation_cons_app.
-
- Theorem Permutation_length : forall (l l' : list A), Permutation l l' -> length l = length l'.
- Proof.
- intros l l' Hperm; induction Hperm; simpl; auto.
- apply trans_eq with (y:= (length l')); trivial.
- Qed.
-
- Theorem Permutation_rev : forall (l : list A), Permutation l (rev l).
- Proof.
- induction l as [| x l]; simpl; trivial.
- apply Permutation_trans with (l' := (x::nil)++rev l).
- simpl; auto.
- apply Permutation_app_swap.
- Qed.
-
- Theorem Permutation_ind_bis :
- forall P : list A -> list A -> Prop,
- P (@nil A) (@nil A) ->
- (forall x l l', Permutation l l' -> P l l' -> P (x :: l) (x :: l')) ->
- (forall x y l l', Permutation l l' -> P l l' -> P (y :: x :: l) (x :: y :: l')) ->
- (forall l l' l'', Permutation l l' -> P l l' -> Permutation l' l'' -> P l' l'' -> P l l'') ->
- forall l l', Permutation l l' -> P l l'.
- Proof.
- intros P Hnil Hskip Hswap Htrans.
- induction 1; auto.
- apply Htrans with (x::y::l); auto.
- apply Hswap; auto.
- induction l; auto.
- apply Hskip; auto.
- apply Hskip; auto.
- induction l; auto.
- eauto.
- Qed.
-
- Ltac break_list l x l' H :=
- destruct l as [|x l']; simpl in *;
- injection H; intros; subst; clear H.
-
- Theorem Permutation_app_inv : forall (l1 l2 l3 l4:list A) a,
- Permutation (l1++a::l2) (l3++a::l4) -> Permutation (l1++l2) (l3 ++ l4).
- Proof.
- set (P:=fun l l' =>
- forall a l1 l2 l3 l4, l=l1++a::l2 -> l'=l3++a::l4 -> Permutation (l1++l2) (l3++l4)).
- cut (forall l l', Permutation l l' -> P l l').
- intros; apply (H _ _ H0 a); auto.
- intros; apply (Permutation_ind_bis P); unfold P; clear P; try clear H l l'; simpl; auto.
- (* nil *)
- intros; destruct l1; simpl in *; discriminate.
- (* skip *)
- intros x l l' H IH; intros.
- break_list l1 b l1' H0; break_list l3 c l3' H1.
- auto.
- apply perm_trans with (l3'++c::l4); auto.
- apply perm_trans with (l1'++a::l2); auto using Permutation_cons_app.
- apply perm_skip.
- apply (IH a l1' l2 l3' l4); auto.
- (* contradict *)
- intros x y l l' Hp IH; intros.
- break_list l1 b l1' H; break_list l3 c l3' H0.
- auto.
- break_list l3' b l3'' H.
- auto.
- apply perm_trans with (c::l3''++b::l4); auto.
- break_list l1' c l1'' H1.
- auto.
- apply perm_trans with (b::l1''++c::l2); auto.
- break_list l3' d l3'' H; break_list l1' e l1'' H1.
- auto.
- apply perm_trans with (e::a::l1''++l2); auto.
- apply perm_trans with (e::l1''++a::l2); auto.
- apply perm_trans with (d::a::l3''++l4); auto.
- apply perm_trans with (d::l3''++a::l4); auto.
- apply perm_trans with (e::d::l1''++l2); auto.
- apply perm_skip; apply perm_skip.
- apply (IH a l1'' l2 l3'' l4); auto.
- (*trans*)
- intros.
- destruct (In_split a l') as (l'1,(l'2,H6)).
- apply (Permutation_in a H).
- subst l.
- apply in_or_app; right; red; auto.
- apply perm_trans with (l'1++l'2).
- apply (H0 _ _ _ _ _ H3 H6).
- apply (H2 _ _ _ _ _ H6 H4).
- Qed.
-
- Theorem Permutation_cons_inv :
- forall l l' a, Permutation (a::l) (a::l') -> Permutation l l'.
- Proof.
- intros; exact (Permutation_app_inv (@nil _) l (@nil _) l' a H).
- Qed.
-
- Theorem Permutation_cons_app_inv :
- forall l l1 l2 a, Permutation (a :: l) (l1 ++ a :: l2) -> Permutation l (l1 ++ l2).
- Proof.
- intros; exact (Permutation_app_inv (@nil _) l l1 l2 a H).
- Qed.
-
- Theorem Permutation_app_inv_l :
- forall l l1 l2, Permutation (l ++ l1) (l ++ l2) -> Permutation l1 l2.
- Proof.
- induction l; simpl; auto.
- intros.
- apply IHl.
- apply Permutation_cons_inv with a; auto.
- Qed.
-
- Theorem Permutation_app_inv_r :
- forall l l1 l2, Permutation (l1 ++ l) (l2 ++ l) -> Permutation l1 l2.
- Proof.
- induction l.
- intros l1 l2; do 2 rewrite <- app_nil_end; auto.
- intros.
- apply IHl.
- apply Permutation_app_inv with a; auto.
- Qed.
-
- End Permutation.
+ End Reverse_Induction.
(***********************************)
(** ** Decidable equality on lists *)
(***********************************)
- Hypotheses eqA_dec : forall (x y : A), {x = y}+{x <> y}.
+ Hypothesis eq_dec : forall (x y : A), {x = y}+{x <> y}.
Lemma list_eq_dec :
forall l l':list A, {l = l'} + {l <> l'}.
Proof.
induction l as [| x l IHl]; destruct l' as [| y l'].
left; trivial.
- right; apply nil_cons.
+ right; apply nil_cons.
right; unfold not; intro HF; apply (nil_cons (sym_eq HF)).
- destruct (eqA_dec x y) as [xeqy|xneqy]; destruct (IHl l') as [leql'|lneql'];
+ destruct (eq_dec x y) as [xeqy|xneqy]; destruct (IHl l') as [leql'|lneql'];
try (right; unfold not; intro HF; injection HF; intros; contradiction).
rewrite xeqy; rewrite leql'; left; trivial.
Qed.
@@ -1026,21 +776,19 @@ End ListOps.
Section Map.
Variables A B : Type.
Variable f : A -> B.
-
+
Fixpoint map (l:list A) : list B :=
match l with
| nil => nil
| cons a t => cons (f a) (map t)
end.
-
+
Lemma in_map :
forall (l:list A) (x:A), In x l -> In (f x) (map l).
- Proof.
- induction l as [| a l IHl]; simpl in |- *;
- [ auto
- | destruct 1; [ left; apply f_equal with (f := f); assumption | auto ] ].
+ Proof.
+ induction l; firstorder (subst; auto).
Qed.
-
+
Lemma in_map_iff : forall l y, In y (map l) <-> exists x, f x = y /\ In x l.
Proof.
induction l; firstorder (subst; auto).
@@ -1051,45 +799,48 @@ Section Map.
induction l; simpl; auto.
Qed.
- Lemma map_nth : forall l d n,
+ Lemma map_nth : forall l d n,
nth n (map l) (f d) = f (nth n l d).
Proof.
induction l; simpl map; destruct n; firstorder.
Qed.
-
- Lemma map_app : forall l l',
+
+ Lemma map_nth_error : forall n l d,
+ nth_error l n = Some d -> nth_error (map l) n = Some (f d).
+ Proof.
+ induction n; intros [ | ] ? Heq; simpl in *; inversion Heq; auto.
+ Qed.
+
+ Lemma map_app : forall l l',
map (l++l') = (map l)++(map l').
- Proof.
+ Proof.
induction l; simpl; auto.
intros; rewrite IHl; auto.
Qed.
-
+
Lemma map_rev : forall l, map (rev l) = rev (map l).
- Proof.
+ Proof.
induction l; simpl; auto.
rewrite map_app.
rewrite IHl; auto.
Qed.
- Hint Constructors Permutation.
-
- Lemma Permutation_map :
- forall l l', Permutation l l' -> Permutation (map l) (map l').
- Proof.
- induction 1; simpl; auto; eauto.
+ Lemma map_eq_nil : forall l, map l = [] -> l = [].
+ Proof.
+ destruct l; simpl; reflexivity || discriminate.
Qed.
(** [flat_map] *)
Definition flat_map (f:A -> list B) :=
- fix flat_map (l:list A) {struct l} : list B :=
+ fix flat_map (l:list A) : list B :=
match l with
| nil => nil
| cons x t => (f x)++(flat_map t)
end.
-
+
Lemma in_flat_map : forall (f:A->list B)(l:list A)(y:B),
- In y (flat_map f l) <-> exists x, In x l /\ In y (f x).
+ In y (flat_map f l) <-> exists x, In x l /\ In y (f x).
Proof.
induction l; simpl; split; intros.
contradiction.
@@ -1105,16 +856,22 @@ Section Map.
exists x; auto.
Qed.
-End Map.
+End Map.
+
+Lemma map_id : forall (A :Type) (l : list A),
+ map (fun x => x) l = l.
+Proof.
+ induction l; simpl; auto; rewrite IHl; auto.
+Qed.
-Lemma map_map : forall (A B C:Type)(f:A->B)(g:B->C) l,
+Lemma map_map : forall (A B C:Type)(f:A->B)(g:B->C) l,
map g (map f l) = map (fun x => g (f x)) l.
Proof.
induction l; simpl; auto.
rewrite IHl; auto.
Qed.
-Lemma map_ext :
+Lemma map_ext :
forall (A B : Type)(f g:A->B), (forall a, f a = g a) -> forall l, map f l = map g l.
Proof.
induction l; simpl; auto.
@@ -1129,17 +886,17 @@ Qed.
Section Fold_Left_Recursor.
Variables A B : Type.
Variable f : A -> B -> A.
-
- Fixpoint fold_left (l:list B) (a0:A) {struct l} : A :=
+
+ Fixpoint fold_left (l:list B) (a0:A) : A :=
match l with
| nil => a0
| cons b t => fold_left t (f a0 b)
end.
-
- Lemma fold_left_app : forall (l l':list B)(i:A),
+
+ Lemma fold_left_app : forall (l l':list B)(i:A),
fold_left (l++l') i = fold_left l' (fold_left l i).
Proof.
- induction l.
+ induction l.
simpl; auto.
intros.
simpl.
@@ -1148,7 +905,7 @@ Section Fold_Left_Recursor.
End Fold_Left_Recursor.
-Lemma fold_left_length :
+Lemma fold_left_length :
forall (A:Type)(l:list A), fold_left (fun x _ => S x) l 0 = length l.
Proof.
intro A.
@@ -1168,7 +925,7 @@ Section Fold_Right_Recursor.
Variables A B : Type.
Variable f : B -> A -> A.
Variable a0 : A.
-
+
Fixpoint fold_right (l:list B) : A :=
match l with
| nil => a0
@@ -1177,7 +934,7 @@ Section Fold_Right_Recursor.
End Fold_Right_Recursor.
- Lemma fold_right_app : forall (A B:Type)(f:A->B->B) l l' i,
+ Lemma fold_right_app : forall (A B:Type)(f:A->B->B) l l' i,
fold_right f i (l++l') = fold_right f (fold_right f i l') l.
Proof.
induction l.
@@ -1186,7 +943,7 @@ End Fold_Right_Recursor.
f_equal; auto.
Qed.
- Lemma fold_left_rev_right : forall (A B:Type)(f:A->B->B) l i,
+ Lemma fold_left_rev_right : forall (A B:Type)(f:A->B->B) l i,
fold_right f i (rev l) = fold_left (fun x y => f y x) l i.
Proof.
induction l.
@@ -1204,10 +961,10 @@ End Fold_Right_Recursor.
Proof.
destruct l as [| a l].
reflexivity.
- simpl in |- *.
+ simpl.
rewrite <- H0.
generalize a0 a.
- induction l as [| a3 l IHl]; simpl in |- *.
+ induction l as [| a3 l IHl]; simpl.
trivial.
intros.
rewrite H.
@@ -1223,7 +980,7 @@ End Fold_Right_Recursor.
(** [(list_power x y)] is [y^x], or the set of sequences of elts of [y]
indexed by elts of [x], sorted in lexicographic order. *)
- Fixpoint list_power (A B:Type)(l:list A) (l':list B) {struct l} :
+ Fixpoint list_power (A B:Type)(l:list A) (l':list B) :
list (list (A * B)) :=
match l with
| nil => cons nil nil
@@ -1237,20 +994,20 @@ End Fold_Right_Recursor.
(** ** Boolean operations over lists *)
(*************************************)
- Section Bool.
+ Section Bool.
Variable A : Type.
Variable f : A -> bool.
- (** find whether a boolean function can be satisfied by an
+ (** find whether a boolean function can be satisfied by an
elements of the list. *)
- Fixpoint existsb (l:list A) {struct l}: bool :=
- match l with
+ Fixpoint existsb (l:list A) : bool :=
+ match l with
| nil => false
| a::l => f a || existsb l
end.
- Lemma existsb_exists :
+ Lemma existsb_exists :
forall l, existsb l = true <-> exists x, In x l /\ f x = true.
Proof.
induction l; simpl; intuition.
@@ -1269,20 +1026,28 @@ End Fold_Right_Recursor.
inversion 1.
simpl; intros.
destruct (orb_false_elim _ _ H0); clear H0; auto.
- destruct n ; auto.
+ destruct n ; auto.
rewrite IHl; auto with arith.
Qed.
- (** find whether a boolean function is satisfied by
+ Lemma existsb_app : forall l1 l2,
+ existsb (l1++l2) = existsb l1 || existsb l2.
+ Proof.
+ induction l1; intros l2; simpl.
+ solve[auto].
+ case (f a); simpl; solve[auto].
+ Qed.
+
+ (** find whether a boolean function is satisfied by
all the elements of a list. *)
- Fixpoint forallb (l:list A) {struct l} : bool :=
- match l with
+ Fixpoint forallb (l:list A) : bool :=
+ match l with
| nil => true
| a::l => f a && forallb l
end.
- Lemma forallb_forall :
+ Lemma forallb_forall :
forall l, forallb l = true <-> (forall x, In x l -> f x = true).
Proof.
induction l; simpl; intuition.
@@ -1291,13 +1056,20 @@ End Fold_Right_Recursor.
destruct (andb_prop _ _ H1); auto.
assert (forallb l = true).
apply H0; intuition.
- rewrite H1; auto.
+ rewrite H1; auto.
Qed.
+ Lemma forallb_app :
+ forall l1 l2, forallb (l1++l2) = forallb l1 && forallb l2.
+ Proof.
+ induction l1; simpl.
+ solve[auto].
+ case (f a); simpl; solve[auto].
+ Qed.
(** [filter] *)
- Fixpoint filter (l:list A) : list A :=
- match l with
+ Fixpoint filter (l:list A) : list A :=
+ match l with
| nil => nil
| x :: l => if f x then x::(filter l) else filter l
end.
@@ -1320,10 +1092,10 @@ End Fold_Right_Recursor.
(** [partition] *)
- Fixpoint partition (l:list A) {struct l} : list A * list A :=
+ Fixpoint partition (l:list A) : list A * list A :=
match l with
| nil => (nil, nil)
- | x :: tl => let (g,d) := partition tl in
+ | x :: tl => let (g,d) := partition tl in
if f x then (x::g,d) else (g,x::d)
end.
@@ -1338,17 +1110,17 @@ End Fold_Right_Recursor.
Section ListPairs.
Variables A B : Type.
-
+
(** [split] derives two lists from a list of pairs *)
- Fixpoint split (l:list (A*B)) { struct l }: list A * list B :=
+ Fixpoint split (l:list (A*B)) : list A * list B :=
match l with
| nil => (nil, nil)
| (x,y) :: tl => let (g,d) := split tl in (x::g, y::d)
end.
- Lemma in_split_l : forall (l:list (A*B))(p:A*B),
- In p l -> In (fst p) (fst (split l)).
+ Lemma in_split_l : forall (l:list (A*B))(p:A*B),
+ In p l -> In (fst p) (fst (split l)).
Proof.
induction l; simpl; intros; auto.
destruct p; destruct a; destruct (split l); simpl in *.
@@ -1357,8 +1129,8 @@ End Fold_Right_Recursor.
right; apply (IHl (a0,b) H).
Qed.
- Lemma in_split_r : forall (l:list (A*B))(p:A*B),
- In p l -> In (snd p) (snd (split l)).
+ Lemma in_split_r : forall (l:list (A*B))(p:A*B),
+ In p l -> In (snd p) (snd (split l)).
Proof.
induction l; simpl; intros; auto.
destruct p; destruct a; destruct (split l); simpl in *.
@@ -1367,7 +1139,7 @@ End Fold_Right_Recursor.
right; apply (IHl (a0,b) H).
Qed.
- Lemma split_nth : forall (l:list (A*B))(n:nat)(d:A*B),
+ Lemma split_nth : forall (l:list (A*B))(n:nat)(d:A*B),
nth n l d = (nth n (fst (split l)) (fst d), nth n (snd (split l)) (snd d)).
Proof.
induction l.
@@ -1379,40 +1151,40 @@ End Fold_Right_Recursor.
Qed.
Lemma split_length_l : forall (l:list (A*B)),
- length (fst (split l)) = length l.
+ length (fst (split l)) = length l.
Proof.
induction l; simpl; auto.
destruct a; destruct (split l); simpl; auto.
Qed.
Lemma split_length_r : forall (l:list (A*B)),
- length (snd (split l)) = length l.
+ length (snd (split l)) = length l.
Proof.
induction l; simpl; auto.
destruct a; destruct (split l); simpl; auto.
Qed.
- (** [combine] is the opposite of [split].
- Lists given to [combine] are meant to be of same length.
+ (** [combine] is the opposite of [split].
+ Lists given to [combine] are meant to be of same length.
If not, [combine] stops on the shorter list *)
- Fixpoint combine (l : list A) (l' : list B){struct l} : list (A*B) :=
+ Fixpoint combine (l : list A) (l' : list B) : list (A*B) :=
match l,l' with
| x::tl, y::tl' => (x,y)::(combine tl tl')
| _, _ => nil
end.
- Lemma split_combine : forall (l: list (A*B)),
+ Lemma split_combine : forall (l: list (A*B)),
let (l1,l2) := split l in combine l1 l2 = l.
Proof.
induction l.
simpl; auto.
- destruct a; simpl.
+ destruct a; simpl.
destruct (split l); simpl in *.
f_equal; auto.
Qed.
- Lemma combine_split : forall (l:list A)(l':list B), length l = length l' ->
+ Lemma combine_split : forall (l:list A)(l':list B), length l = length l' ->
split (combine l l') = (l,l').
Proof.
induction l; destruct l'; simpl; intros; auto; try discriminate.
@@ -1420,19 +1192,19 @@ End Fold_Right_Recursor.
rewrite IHl; auto.
Qed.
- Lemma in_combine_l : forall (l:list A)(l':list B)(x:A)(y:B),
+ Lemma in_combine_l : forall (l:list A)(l':list B)(x:A)(y:B),
In (x,y) (combine l l') -> In x l.
Proof.
induction l.
simpl; auto.
destruct l'; simpl; auto; intros.
- contradiction.
+ contradiction.
destruct H.
injection H; auto.
right; apply IHl with l' y; auto.
Qed.
- Lemma in_combine_r : forall (l:list A)(l':list B)(x:A)(y:B),
+ Lemma in_combine_r : forall (l:list A)(l':list B)(x:A)(y:B),
In (x,y) (combine l l') -> In y l'.
Proof.
induction l.
@@ -1443,7 +1215,7 @@ End Fold_Right_Recursor.
right; apply IHl with x; auto.
Qed.
- Lemma combine_length : forall (l:list A)(l':list B),
+ Lemma combine_length : forall (l:list A)(l':list B),
length (combine l l') = min (length l) (length l').
Proof.
induction l.
@@ -1451,8 +1223,8 @@ End Fold_Right_Recursor.
destruct l'; simpl; auto.
Qed.
- Lemma combine_nth : forall (l:list A)(l':list B)(n:nat)(x:A)(y:B),
- length l = length l' ->
+ Lemma combine_nth : forall (l:list A)(l':list B)(n:nat)(x:A)(y:B),
+ length l = length l' ->
nth n (combine l l') (x,y) = (nth n l x, nth n l' y).
Proof.
induction l; destruct l'; intros; try discriminate.
@@ -1461,10 +1233,10 @@ End Fold_Right_Recursor.
Qed.
(** [list_prod] has the same signature as [combine], but unlike
- [combine], it adds every possible pairs, not only those at the
+ [combine], it adds every possible pairs, not only those at the
same position. *)
- Fixpoint list_prod (l:list A) (l':list B) {struct l} :
+ Fixpoint list_prod (l:list A) (l':list B) :
list (A * B) :=
match l with
| nil => nil
@@ -1474,25 +1246,25 @@ End Fold_Right_Recursor.
Lemma in_prod_aux :
forall (x:A) (y:B) (l:list B),
In y l -> In (x, y) (map (fun y0:B => (x, y0)) l).
- Proof.
+ Proof.
induction l;
- [ simpl in |- *; auto
- | simpl in |- *; destruct 1 as [H1| ];
+ [ simpl; auto
+ | simpl; destruct 1 as [H1| ];
[ left; rewrite H1; trivial | right; auto ] ].
Qed.
Lemma in_prod :
forall (l:list A) (l':list B) (x:A) (y:B),
In x l -> In y l' -> In (x, y) (list_prod l l').
- Proof.
+ Proof.
induction l;
- [ simpl in |- *; tauto
- | simpl in |- *; intros; apply in_or_app; destruct H;
+ [ simpl; tauto
+ | simpl; intros; apply in_or_app; destruct H;
[ left; rewrite H; apply in_prod_aux; assumption | right; auto ] ].
Qed.
- Lemma in_prod_iff :
- forall (l:list A)(l':list B)(x:A)(y:B),
+ Lemma in_prod_iff :
+ forall (l:list A)(l':list B)(x:A)(y:B),
In (x,y) (list_prod l l') <-> In x l /\ In y l'.
Proof.
split; [ | intros; apply in_prod; intuition ].
@@ -1503,9 +1275,9 @@ End Fold_Right_Recursor.
destruct (H1 H0) as (z,(H2,H3)); clear H0 H1.
injection H2; clear H2; intros; subst; intuition.
intuition.
- Qed.
+ Qed.
- Lemma prod_length : forall (l:list A)(l':list B),
+ Lemma prod_length : forall (l:list A)(l':list B),
length (list_prod l l') = (length l) * (length l').
Proof.
induction l; simpl; auto.
@@ -1520,9 +1292,9 @@ End Fold_Right_Recursor.
-(***************************************)
-(** * Miscelenous operations on lists *)
-(***************************************)
+(*****************************************)
+(** * Miscellaneous operations on lists *)
+(*****************************************)
@@ -1539,34 +1311,34 @@ Section length_order.
Variables l m n : list A.
Lemma lel_refl : lel l l.
- Proof.
- unfold lel in |- *; auto with arith.
+ Proof.
+ unfold lel; auto with arith.
Qed.
Lemma lel_trans : lel l m -> lel m n -> lel l n.
- Proof.
- unfold lel in |- *; intros.
+ Proof.
+ unfold lel; intros.
now_show (length l <= length n).
apply le_trans with (length m); auto with arith.
Qed.
Lemma lel_cons_cons : lel l m -> lel (a :: l) (b :: m).
- Proof.
- unfold lel in |- *; simpl in |- *; auto with arith.
+ Proof.
+ unfold lel; simpl; auto with arith.
Qed.
Lemma lel_cons : lel l m -> lel l (b :: m).
- Proof.
- unfold lel in |- *; simpl in |- *; auto with arith.
+ Proof.
+ unfold lel; simpl; auto with arith.
Qed.
Lemma lel_tail : lel (a :: l) (b :: m) -> lel l m.
- Proof.
- unfold lel in |- *; simpl in |- *; auto with arith.
+ Proof.
+ unfold lel; simpl; auto with arith.
Qed.
Lemma lel_nil : forall l':list A, lel l' nil -> nil = l'.
- Proof.
+ Proof.
intro l'; elim l'; auto with arith.
intros a' y H H0.
now_show (nil = a' :: y).
@@ -1588,40 +1360,40 @@ Section SetIncl.
Definition incl (l m:list A) := forall a:A, In a l -> In a m.
Hint Unfold incl.
-
+
Lemma incl_refl : forall l:list A, incl l l.
- Proof.
+ Proof.
auto.
Qed.
Hint Resolve incl_refl.
-
+
Lemma incl_tl : forall (a:A) (l m:list A), incl l m -> incl l (a :: m).
- Proof.
+ Proof.
auto with datatypes.
Qed.
Hint Immediate incl_tl.
Lemma incl_tran : forall l m n:list A, incl l m -> incl m n -> incl l n.
- Proof.
+ Proof.
auto.
Qed.
-
+
Lemma incl_appl : forall l m n:list A, incl l n -> incl l (n ++ m).
- Proof.
+ Proof.
auto with datatypes.
Qed.
Hint Immediate incl_appl.
-
+
Lemma incl_appr : forall l m n:list A, incl l n -> incl l (m ++ n).
- Proof.
+ Proof.
auto with datatypes.
Qed.
Hint Immediate incl_appr.
-
+
Lemma incl_cons :
forall (a:A) (l m:list A), In a m -> incl l m -> incl (a :: l) m.
- Proof.
- unfold incl in |- *; simpl in |- *; intros a l m H H0 a0 H1.
+ Proof.
+ unfold incl; simpl; intros a l m H H0 a0 H1.
now_show (In a0 m).
elim H1.
now_show (a = a0 -> In a0 m).
@@ -1632,15 +1404,15 @@ Section SetIncl.
auto.
Qed.
Hint Resolve incl_cons.
-
+
Lemma incl_app : forall l m n:list A, incl l n -> incl m n -> incl (l ++ m) n.
- Proof.
- unfold incl in |- *; simpl in |- *; intros l m n H H0 a H1.
+ Proof.
+ unfold incl; simpl; intros l m n H H0 a H1.
now_show (In a n).
elim (in_app_or _ _ _ H1); auto.
Qed.
Hint Resolve incl_app.
-
+
End SetIncl.
Hint Resolve incl_refl incl_tl incl_tran incl_appl incl_appr incl_cons
@@ -1655,24 +1427,24 @@ Section Cutting.
Variable A : Type.
- Fixpoint firstn (n:nat)(l:list A) {struct n} : list A :=
- match n with
- | 0 => nil
- | S n => match l with
- | nil => nil
+ Fixpoint firstn (n:nat)(l:list A) : list A :=
+ match n with
+ | 0 => nil
+ | S n => match l with
+ | nil => nil
| a::l => a::(firstn n l)
end
end.
-
- Fixpoint skipn (n:nat)(l:list A) { struct n } : list A :=
- match n with
- | 0 => l
- | S n => match l with
- | nil => nil
+
+ Fixpoint skipn (n:nat)(l:list A) : list A :=
+ match n with
+ | 0 => l
+ | S n => match l with
+ | nil => nil
| a::l => skipn n l
end
end.
-
+
Lemma firstn_skipn : forall n l, firstn n l ++ skipn n l = l.
Proof.
induction n.
@@ -1686,7 +1458,7 @@ Section Cutting.
induction n; destruct l; simpl; auto.
Qed.
- Lemma removelast_firstn : forall n l, n < length l ->
+ Lemma removelast_firstn : forall n l, n < length l ->
removelast (firstn (S n) l) = firstn n l.
Proof.
induction n; destruct l.
@@ -1699,13 +1471,13 @@ Section Cutting.
change (firstn (S n) (a::l)) with (a::firstn n l).
rewrite removelast_app.
rewrite IHn; auto with arith.
-
+
clear IHn; destruct l; simpl in *; try discriminate.
inversion_clear H.
inversion_clear H0.
Qed.
- Lemma firstn_removelast : forall n l, n < length l ->
+ Lemma firstn_removelast : forall n l, n < length l ->
firstn n (removelast l) = firstn n l.
Proof.
induction n; destruct l.
@@ -1730,10 +1502,10 @@ End Cutting.
Section ReDun.
Variable A : Type.
-
- Inductive NoDup : list A -> Prop :=
- | NoDup_nil : NoDup nil
- | NoDup_cons : forall x l, ~ In x l -> NoDup l -> NoDup (x::l).
+
+ Inductive NoDup : list A -> Prop :=
+ | NoDup_nil : NoDup nil
+ | NoDup_cons : forall x l, ~ In x l -> NoDup l -> NoDup (x::l).
Lemma NoDup_remove_1 : forall l l' a, NoDup (l++a::l') -> NoDup (l++l').
Proof.
@@ -1758,34 +1530,6 @@ Section ReDun.
destruct (IHl _ _ H1); auto.
Qed.
- Lemma NoDup_Permutation : forall l l',
- NoDup l -> NoDup l' -> (forall x, In x l <-> In x l') -> Permutation l l'.
- Proof.
- induction l.
- destruct l'; simpl; intros.
- apply perm_nil.
- destruct (H1 a) as (_,H2); destruct H2; auto.
- intros.
- destruct (In_split a l') as (l'1,(l'2,H2)).
- destruct (H1 a) as (H2,H3); simpl in *; auto.
- subst l'.
- apply Permutation_cons_app.
- inversion_clear H.
- apply IHl; auto.
- apply NoDup_remove_1 with a; auto.
- intro x; split; intros.
- assert (In x (l'1++a::l'2)).
- destruct (H1 x); simpl in *; auto.
- apply in_or_app; destruct (in_app_or _ _ _ H4); auto.
- destruct H5; auto.
- subst x; destruct H2; auto.
- assert (In x (l'1++a::l'2)).
- apply in_or_app; destruct (in_app_or _ _ _ H); simpl; auto.
- destruct (H1 x) as (_,H5); destruct H5; auto.
- subst x.
- destruct (NoDup_remove_2 _ _ _ H0 H).
- Qed.
-
End ReDun.
@@ -1795,21 +1539,21 @@ End ReDun.
Section NatSeq.
- (** [seq] computes the sequence of [len] contiguous integers
+ (** [seq] computes the sequence of [len] contiguous integers
that starts at [start]. For instance, [seq 2 3] is [2::3::4::nil]. *)
-
- Fixpoint seq (start len:nat) {struct len} : list nat :=
- match len with
+
+ Fixpoint seq (start len:nat) : list nat :=
+ match len with
| 0 => nil
| S len => start :: seq (S start) len
- end.
-
+ end.
+
Lemma seq_length : forall len start, length (seq start len) = len.
Proof.
induction len; simpl; auto.
Qed.
-
- Lemma seq_nth : forall len start n d,
+
+ Lemma seq_nth : forall len start n d,
n < len -> nth n (seq start len) d = start+n.
Proof.
induction len; intros.
@@ -1822,7 +1566,7 @@ Section NatSeq.
Lemma seq_shift : forall len start,
map S (seq start len) = seq (S start) len.
- Proof.
+ Proof.
induction len; simpl; auto.
intros.
rewrite IHlen.
@@ -1832,11 +1576,172 @@ Section NatSeq.
End NatSeq.
+(** * Existential and universal predicates over lists *)
+
+Inductive Exists {A} (P:A->Prop) : list A -> Prop :=
+ | Exists_cons_hd : forall x l, P x -> Exists P (x::l)
+ | Exists_cons_tl : forall x l, Exists P l -> Exists P (x::l).
+Hint Constructors Exists.
+
+Lemma Exists_exists : forall A P (l:list A),
+ Exists P l <-> (exists x, In x l /\ P x).
+Proof.
+split.
+induction 1; firstorder.
+induction l; firstorder; subst; auto.
+Qed.
+
+Lemma Exists_nil : forall A (P:A->Prop), Exists P nil <-> False.
+Proof. split; inversion 1. Qed.
+
+Lemma Exists_cons : forall A (P:A->Prop) x l,
+ Exists P (x::l) <-> P x \/ Exists P l.
+Proof. split; inversion 1; auto. Qed.
+
+
+Inductive Forall {A} (P:A->Prop) : list A -> Prop :=
+ | Forall_nil : Forall P nil
+ | Forall_cons : forall x l, P x -> Forall P l -> Forall P (x::l).
+Hint Constructors Forall.
- (** * Exporting hints and tactics *)
+Lemma Forall_forall : forall A P (l:list A),
+ Forall P l <-> (forall x, In x l -> P x).
+Proof.
+split.
+induction 1; firstorder; subst; auto.
+induction l; firstorder.
+Qed.
+
+Lemma Forall_inv : forall A P (a:A) l, Forall P (a :: l) -> P a.
+Proof.
+intros; inversion H; trivial.
+Defined.
+
+Lemma Forall_rect : forall A (P:A->Prop) (Q : list A -> Type),
+ Q [] -> (forall b l, P b -> Q (b :: l)) -> forall l, Forall P l -> Q l.
+Proof.
+intros A P Q H H'; induction l; intro; [|eapply H', Forall_inv]; eassumption.
+Defined.
+
+Lemma Forall_impl : forall A (P Q : A -> Prop), (forall a, P a -> Q a) ->
+ forall l, Forall P l -> Forall Q l.
+Proof.
+ intros A P Q Himp l H.
+ induction H; firstorder.
+Qed.
+(** [Forall2]: stating that elements of two lists are pairwise related. *)
-Hint Rewrite
+Inductive Forall2 A B (R:A->B->Prop) : list A -> list B -> Prop :=
+ | Forall2_nil : Forall2 R [] []
+ | Forall2_cons : forall x y l l',
+ R x y -> Forall2 R l l' -> Forall2 R (x::l) (y::l').
+Hint Constructors Forall2.
+
+Theorem Forall2_refl : forall A B (R:A->B->Prop), Forall2 R [] [].
+Proof. exact Forall2_nil. Qed.
+
+Theorem Forall2_app_inv_l : forall A B (R:A->B->Prop) l1 l2 l',
+ Forall2 R (l1 ++ l2) l' ->
+ exists l1', exists l2', Forall2 R l1 l1' /\ Forall2 R l2 l2' /\ l' = l1' ++ l2'.
+Proof.
+ induction l1; intros.
+ exists [], l'; auto.
+ simpl in H; inversion H; subst; clear H.
+ apply IHl1 in H4 as (l1' & l2' & Hl1 & Hl2 & ->).
+ exists (y::l1'), l2'; simpl; auto.
+Qed.
+
+Theorem Forall2_app_inv_r : forall A B (R:A->B->Prop) l1' l2' l,
+ Forall2 R l (l1' ++ l2') ->
+ exists l1, exists l2, Forall2 R l1 l1' /\ Forall2 R l2 l2' /\ l = l1 ++ l2.
+Proof.
+ induction l1'; intros.
+ exists [], l; auto.
+ simpl in H; inversion H; subst; clear H.
+ apply IHl1' in H4 as (l1 & l2 & Hl1 & Hl2 & ->).
+ exists (x::l1), l2; simpl; auto.
+Qed.
+
+Theorem Forall2_app : forall A B (R:A->B->Prop) l1 l2 l1' l2',
+ Forall2 R l1 l1' -> Forall2 R l2 l2' -> Forall2 R (l1 ++ l2) (l1' ++ l2').
+Proof.
+ intros. induction l1 in l1', H, H0 |- *; inversion H; subst; simpl; auto.
+Qed.
+
+(** [ForallPairs] : specifies that a certain relation should
+ always hold when inspecting all possible pairs of elements of a list. *)
+
+Definition ForallPairs A (R : A -> A -> Prop) l :=
+ forall a b, In a l -> In b l -> R a b.
+
+(** [ForallOrdPairs] : we still check a relation over all pairs
+ of elements of a list, but now the order of elements matters. *)
+
+Inductive ForallOrdPairs A (R : A -> A -> Prop) : list A -> Prop :=
+ | FOP_nil : ForallOrdPairs R nil
+ | FOP_cons : forall a l,
+ Forall (R a) l -> ForallOrdPairs R l -> ForallOrdPairs R (a::l).
+Hint Constructors ForallOrdPairs.
+
+Lemma ForallOrdPairs_In : forall A (R:A->A->Prop) l,
+ ForallOrdPairs R l ->
+ forall x y, In x l -> In y l -> x=y \/ R x y \/ R y x.
+Proof.
+ induction 1.
+ inversion 1.
+ simpl; destruct 1; destruct 1; repeat subst; auto.
+ right; left. apply -> Forall_forall; eauto.
+ right; right. apply -> Forall_forall; eauto.
+Qed.
+
+
+(** [ForallPairs] implies [ForallOrdPairs]. The reverse implication is true
+ only when [R] is symmetric and reflexive. *)
+
+Lemma ForallPairs_ForallOrdPairs : forall A (R:A->A->Prop) l,
+ ForallPairs R l -> ForallOrdPairs R l.
+Proof.
+ induction l; auto. intros H.
+ constructor.
+ apply <- Forall_forall. intros; apply H; simpl; auto.
+ apply IHl. red; intros; apply H; simpl; auto.
+Qed.
+
+Lemma ForallOrdPairs_ForallPairs : forall A (R:A->A->Prop),
+ (forall x, R x x) ->
+ (forall x y, R x y -> R y x) ->
+ forall l, ForallOrdPairs R l -> ForallPairs R l.
+Proof.
+ intros A R Refl Sym l Hl x y Hx Hy.
+ destruct (ForallOrdPairs_In Hl _ _ Hx Hy); subst; intuition.
+Qed.
+
+(** * Inversion of predicates over lists based on head symbol *)
+
+Ltac is_list_constr c :=
+ match c with
+ | nil => idtac
+ | (_::_) => idtac
+ | _ => fail
+ end.
+
+Ltac invlist f :=
+ match goal with
+ | H:f ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | _ => idtac
+ end.
+
+
+
+(** * Exporting hints and tactics *)
+
+
+Hint Rewrite
rev_involutive (* rev (rev l) = l *)
rev_unit (* rev (l ++ a :: nil) = a :: rev l *)
map_nth (* nth n (map f l) (f d) = f (nth n l d) *)
@@ -1844,11 +1749,36 @@ Hint Rewrite
seq_length (* length (seq start len) = len *)
app_length (* length (l ++ l') = length l + length l' *)
rev_length (* length (rev l) = length l *)
- : list.
-
-Hint Rewrite <-
- app_nil_end (* l = l ++ nil *)
+ app_nil_r (* l ++ nil = l *)
: list.
Ltac simpl_list := autorewrite with list.
Ltac ssimpl_list := autorewrite with list using simpl.
+
+(* begin hide *)
+(* Compatibility notations after the migration of [list] to [Datatypes] *)
+Notation list := list (only parsing).
+Notation list_rect := list_rect (only parsing).
+Notation list_rec := list_rec (only parsing).
+Notation list_ind := list_ind (only parsing).
+Notation nil := nil (only parsing).
+Notation cons := cons (only parsing).
+Notation length := length (only parsing).
+Notation app := app (only parsing).
+(* Compatibility Names *)
+Notation tail := tl (only parsing).
+Notation head := hd_error (only parsing).
+Notation head_nil := hd_error_nil (only parsing).
+Notation head_cons := hd_error_cons (only parsing).
+Notation ass_app := app_assoc (only parsing).
+Notation app_ass := app_assoc_reverse (only parsing).
+Notation In_split := in_split (only parsing).
+Notation In_rev := in_rev (only parsing).
+Notation In_dec := in_dec (only parsing).
+Notation distr_rev := rev_app_distr (only parsing).
+Notation rev_acc := rev_append (only parsing).
+Notation rev_acc_rev := rev_append_rev (only parsing).
+Notation AllS := Forall (only parsing). (* was formerly in TheoryList *)
+
+Hint Resolve app_nil_end : datatypes v62.
+(* end hide *)