summaryrefslogtreecommitdiff
path: root/theories/IntMap/Mapsubset.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Mapsubset.v')
-rw-r--r--theories/IntMap/Mapsubset.v606
1 files changed, 606 insertions, 0 deletions
diff --git a/theories/IntMap/Mapsubset.v b/theories/IntMap/Mapsubset.v
new file mode 100644
index 00000000..33b412e3
--- /dev/null
+++ b/theories/IntMap/Mapsubset.v
@@ -0,0 +1,606 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapsubset.v,v 1.4.2.1 2004/07/16 19:31:05 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
+Require Import Mapaxioms.
+Require Import Mapiter.
+
+Section MapSubsetDef.
+
+ Variables A B : Set.
+
+ Definition MapSubset (m:Map A) (m':Map B) :=
+ forall a:ad, in_dom A a m = true -> in_dom B a m' = true.
+
+ Definition MapSubset_1 (m:Map A) (m':Map B) :=
+ match MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m with
+ | NONE => true
+ | _ => false
+ end.
+
+ Definition MapSubset_2 (m:Map A) (m':Map B) :=
+ eqmap A (MapDomRestrBy A B m m') (M0 A).
+
+ Lemma MapSubset_imp_1 :
+ forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_1 m m' = true.
+ Proof.
+ unfold MapSubset, MapSubset_1 in |- *. intros.
+ elim
+ (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)).
+ intro H0. elim H0. intro r. elim r. intros a y H1. cut (negb (in_dom B a m') = true).
+ intro. cut (in_dom A a m = false). intro. unfold in_dom in H3.
+ rewrite (MapSweep_semantics_2 _ _ m a y H1) in H3. discriminate H3.
+ elim (sumbool_of_bool (in_dom A a m)). intro H3. rewrite (H a H3) in H2. discriminate H2.
+ trivial.
+ exact (MapSweep_semantics_1 _ _ m a y H1).
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapSubset_1_imp :
+ forall (m:Map A) (m':Map B), MapSubset_1 m m' = true -> MapSubset m m'.
+ Proof.
+ unfold MapSubset, MapSubset_1 in |- *. unfold in_dom at 2 in |- *. intros. elim (option_sum _ (MapGet A m a)).
+ intro H1. elim H1. intros y H2.
+ elim
+ (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)). intro H3.
+ elim H3. intro r. elim r. intros a' y' H4. rewrite H4 in H. discriminate H.
+ intro H3. cut (negb (in_dom B a m') = false). intro. rewrite (negb_intro (in_dom B a m')).
+ rewrite H4. reflexivity.
+ exact (MapSweep_semantics_3 _ _ m H3 a y H2).
+ intro H1. rewrite H1 in H0. discriminate H0.
+ Qed.
+
+ Lemma map_dom_empty_1 :
+ forall m:Map A, eqmap A m (M0 A) -> forall a:ad, in_dom _ a m = false.
+ Proof.
+ unfold eqmap, eqm, in_dom in |- *. intros. rewrite (H a). reflexivity.
+ Qed.
+
+ Lemma map_dom_empty_2 :
+ forall m:Map A, (forall a:ad, in_dom _ a m = false) -> eqmap A m (M0 A).
+ Proof.
+ unfold eqmap, eqm, in_dom in |- *. intros.
+ cut
+ (match MapGet A m a with
+ | NONE => false
+ | SOME _ => true
+ end = false).
+ case (MapGet A m a). trivial.
+ intros. discriminate H0.
+ exact (H a).
+ Qed.
+
+ Lemma MapSubset_imp_2 :
+ forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_2 m m'.
+ Proof.
+ unfold MapSubset, MapSubset_2 in |- *. intros. apply map_dom_empty_2. intro. rewrite in_dom_restrby.
+ elim (sumbool_of_bool (in_dom A a m)). intro H0. rewrite H0. rewrite (H a H0). reflexivity.
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapSubset_2_imp :
+ forall (m:Map A) (m':Map B), MapSubset_2 m m' -> MapSubset m m'.
+ Proof.
+ unfold MapSubset, MapSubset_2 in |- *. intros. cut (in_dom _ a (MapDomRestrBy A B m m') = false).
+ rewrite in_dom_restrby. intro. elim (andb_false_elim _ _ H1). rewrite H0.
+ intro H2. discriminate H2.
+ intro H2. rewrite (negb_intro (in_dom B a m')). rewrite H2. reflexivity.
+ exact (map_dom_empty_1 _ H a).
+ Qed.
+
+End MapSubsetDef.
+
+Section MapSubsetOrder.
+
+ Variables A B C : Set.
+
+ Lemma MapSubset_refl : forall m:Map A, MapSubset A A m m.
+ Proof.
+ unfold MapSubset in |- *. trivial.
+ Qed.
+
+ Lemma MapSubset_antisym :
+ forall (m:Map A) (m':Map B),
+ MapSubset A B m m' ->
+ MapSubset B A m' m -> eqmap unit (MapDom A m) (MapDom B m').
+ Proof.
+ unfold MapSubset, eqmap, eqm in |- *. intros. elim (option_sum _ (MapGet _ (MapDom A m) a)).
+ intro H1. elim H1. intro t. elim t. intro H2. elim (option_sum _ (MapGet _ (MapDom B m') a)).
+ intro H3. elim H3. intro t'. elim t'. intro H4. rewrite H4. exact H2.
+ intro H3. cut (in_dom B a m' = true). intro. rewrite (MapDom_Dom B m' a) in H4.
+ unfold in_FSet, in_dom in H4. rewrite H3 in H4. discriminate H4.
+ apply H. rewrite (MapDom_Dom A m a). unfold in_FSet, in_dom in |- *. rewrite H2. reflexivity.
+ intro H1. elim (option_sum _ (MapGet _ (MapDom B m') a)). intro H2. elim H2. intros t H3.
+ cut (in_dom A a m = true). intro. rewrite (MapDom_Dom A m a) in H4. unfold in_FSet, in_dom in H4.
+ rewrite H1 in H4. discriminate H4.
+ apply H0. rewrite (MapDom_Dom B m' a). unfold in_FSet, in_dom in |- *. rewrite H3. reflexivity.
+ intro H2. rewrite H2. exact H1.
+ Qed.
+
+ Lemma MapSubset_trans :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ MapSubset A B m m' -> MapSubset B C m' m'' -> MapSubset A C m m''.
+ Proof.
+ unfold MapSubset in |- *. intros. apply H0. apply H. assumption.
+ Qed.
+
+End MapSubsetOrder.
+
+Section FSubsetOrder.
+
+ Lemma FSubset_refl : forall s:FSet, MapSubset _ _ s s.
+ Proof.
+ exact (MapSubset_refl unit).
+ Qed.
+
+ Lemma FSubset_antisym :
+ forall s s':FSet,
+ MapSubset _ _ s s' -> MapSubset _ _ s' s -> eqmap unit s s'.
+ Proof.
+ intros. rewrite <- (FSet_Dom s). rewrite <- (FSet_Dom s').
+ exact (MapSubset_antisym _ _ s s' H H0).
+ Qed.
+
+ Lemma FSubset_trans :
+ forall s s' s'':FSet,
+ MapSubset _ _ s s' -> MapSubset _ _ s' s'' -> MapSubset _ _ s s''.
+ Proof.
+ exact (MapSubset_trans unit unit unit).
+ Qed.
+
+End FSubsetOrder.
+
+Section MapSubsetExtra.
+
+ Variables A B : Set.
+
+ Lemma MapSubset_Dom_1 :
+ forall (m:Map A) (m':Map B),
+ MapSubset A B m m' -> MapSubset unit unit (MapDom A m) (MapDom B m').
+ Proof.
+ unfold MapSubset in |- *. intros. elim (MapDom_semantics_2 _ m a H0). intros y H1.
+ cut (in_dom A a m = true -> in_dom B a m' = true). intro. unfold in_dom in H2.
+ rewrite H1 in H2. elim (option_sum _ (MapGet B m' a)). intro H3. elim H3.
+ intros y' H4. exact (MapDom_semantics_1 _ m' a y' H4).
+ intro H3. rewrite H3 in H2. cut (false = true). intro. discriminate H4.
+ apply H2. reflexivity.
+ exact (H a).
+ Qed.
+
+ Lemma MapSubset_Dom_2 :
+ forall (m:Map A) (m':Map B),
+ MapSubset unit unit (MapDom A m) (MapDom B m') -> MapSubset A B m m'.
+ Proof.
+ unfold MapSubset in |- *. intros. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)).
+ intro H1. elim H1. intros y H2.
+ elim (MapDom_semantics_2 _ _ _ (H a (MapDom_semantics_1 _ _ _ _ H2))). intros y' H3.
+ unfold in_dom in |- *. rewrite H3. reflexivity.
+ intro H1. rewrite H1 in H0. discriminate H0.
+ Qed.
+
+ Lemma MapSubset_1_Dom :
+ forall (m:Map A) (m':Map B),
+ MapSubset_1 A B m m' = MapSubset_1 unit unit (MapDom A m) (MapDom B m').
+ Proof.
+ intros. elim (sumbool_of_bool (MapSubset_1 A B m m')). intro H. rewrite H.
+ apply sym_eq. apply MapSubset_imp_1. apply MapSubset_Dom_1. exact (MapSubset_1_imp _ _ _ _ H).
+ intro H. rewrite H. elim (sumbool_of_bool (MapSubset_1 unit unit (MapDom A m) (MapDom B m'))).
+ intro H0.
+ rewrite
+ (MapSubset_imp_1 _ _ _ _
+ (MapSubset_Dom_2 _ _ (MapSubset_1_imp _ _ _ _ H0)))
+ in H.
+ discriminate H.
+ intro. apply sym_eq. assumption.
+ Qed.
+
+ Lemma MapSubset_Put :
+ forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut A m a y).
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite H. apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Put_mono :
+ forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B),
+ MapSubset A B m m' -> MapSubset A B (MapPut A m a y) (MapPut B m' a y').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite (in_dom_put A m a y a0) in H0.
+ elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
+ intro H1. rewrite (H _ H1). apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Put_behind :
+ forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut_behind A m a y).
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put_behind. rewrite H. apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Put_behind_mono :
+ forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B),
+ MapSubset A B m m' ->
+ MapSubset A B (MapPut_behind A m a y) (MapPut_behind B m' a y').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put_behind.
+ rewrite (in_dom_put_behind A m a y a0) in H0.
+ elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
+ intro H1. rewrite (H _ H1). apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Remove :
+ forall (m:Map A) (a:ad), MapSubset A A (MapRemove A m a) m.
+ Proof.
+ unfold MapSubset in |- *. intros. unfold MapSubset in |- *. intros. rewrite (in_dom_remove _ m a a0) in H.
+ elim (andb_prop _ _ H). trivial.
+ Qed.
+
+ Lemma MapSubset_Remove_mono :
+ forall (m:Map A) (m':Map B) (a:ad),
+ MapSubset A B m m' -> MapSubset A B (MapRemove A m a) (MapRemove B m' a).
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_remove. rewrite (in_dom_remove A m a a0) in H0.
+ elim (andb_prop _ _ H0). intros. rewrite H1. rewrite (H _ H2). reflexivity.
+ Qed.
+
+ Lemma MapSubset_Merge_l :
+ forall m m':Map A, MapSubset A A m (MapMerge A m m').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. reflexivity.
+ Qed.
+
+ Lemma MapSubset_Merge_r :
+ forall m m':Map A, MapSubset A A m' (MapMerge A m m').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Merge_mono :
+ forall (m m':Map A) (m'' m''':Map B),
+ MapSubset A B m m'' ->
+ MapSubset A B m' m''' ->
+ MapSubset A B (MapMerge A m m') (MapMerge B m'' m''').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite (in_dom_merge A m m' a) in H1.
+ elim (orb_true_elim _ _ H1). intro H2. rewrite (H _ H2). reflexivity.
+ intro H2. rewrite (H0 _ H2). apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_DomRestrTo_l :
+ forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrTo A B m m') m.
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H).
+ trivial.
+ Qed.
+
+ Lemma MapSubset_DomRestrTo_r :
+ forall (m:Map A) (m':Map B), MapSubset A B (MapDomRestrTo A B m m') m'.
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H).
+ trivial.
+ Qed.
+
+ Lemma MapSubset_ext :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ eqmap A m0 m1 ->
+ eqmap B m2 m3 -> MapSubset A B m0 m2 -> MapSubset A B m1 m3.
+ Proof.
+ intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *.
+ apply eqmap_trans with (m' := MapDomRestrBy A B m0 m2). apply MapDomRestrBy_ext. apply eqmap_sym.
+ assumption.
+ apply eqmap_sym. assumption.
+ exact (MapSubset_imp_2 _ _ _ _ H1).
+ Qed.
+
+ Variables C D : Set.
+
+ Lemma MapSubset_DomRestrTo_mono :
+ forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m m'' ->
+ MapSubset _ _ m' m''' ->
+ MapSubset _ _ (MapDomRestrTo _ _ m m') (MapDomRestrTo _ _ m'' m''').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_restrto. rewrite (in_dom_restrto A B m m' a) in H1.
+ elim (andb_prop _ _ H1). intros. rewrite (H _ H2). rewrite (H0 _ H3). reflexivity.
+ Qed.
+
+ Lemma MapSubset_DomRestrBy_l :
+ forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrBy A B m m') m.
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite (in_dom_restrby _ _ m m' a) in H. elim (andb_prop _ _ H).
+ trivial.
+ Qed.
+
+ Lemma MapSubset_DomRestrBy_mono :
+ forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m m'' ->
+ MapSubset _ _ m''' m' ->
+ MapSubset _ _ (MapDomRestrBy _ _ m m') (MapDomRestrBy _ _ m'' m''').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_restrby. rewrite (in_dom_restrby A B m m' a) in H1.
+ elim (andb_prop _ _ H1). intros. rewrite (H _ H2). elim (sumbool_of_bool (in_dom D a m''')).
+ intro H4. rewrite (H0 _ H4) in H3. discriminate H3.
+ intro H4. rewrite H4. reflexivity.
+ Qed.
+
+End MapSubsetExtra.
+
+Section MapDisjointDef.
+
+ Variables A B : Set.
+
+ Definition MapDisjoint (m:Map A) (m':Map B) :=
+ forall a:ad, in_dom A a m = true -> in_dom B a m' = true -> False.
+
+ Definition MapDisjoint_1 (m:Map A) (m':Map B) :=
+ match MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m with
+ | NONE => true
+ | _ => false
+ end.
+
+ Definition MapDisjoint_2 (m:Map A) (m':Map B) :=
+ eqmap A (MapDomRestrTo A B m m') (M0 A).
+
+ Lemma MapDisjoint_imp_1 :
+ forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_1 m m' = true.
+ Proof.
+ unfold MapDisjoint, MapDisjoint_1 in |- *. intros.
+ elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H0. elim H0.
+ intro r. elim r. intros a y H1. cut (in_dom A a m = true -> in_dom B a m' = true -> False).
+ intro. unfold in_dom at 1 in H2. rewrite (MapSweep_semantics_2 _ _ _ _ _ H1) in H2.
+ rewrite (MapSweep_semantics_1 _ _ _ _ _ H1) in H2. elim (H2 (refl_equal _) (refl_equal _)).
+ exact (H a).
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapDisjoint_1_imp :
+ forall (m:Map A) (m':Map B), MapDisjoint_1 m m' = true -> MapDisjoint m m'.
+ Proof.
+ unfold MapDisjoint, MapDisjoint_1 in |- *. intros.
+ elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H2. elim H2.
+ intro r. elim r. intros a' y' H3. rewrite H3 in H. discriminate H.
+ intro H2. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)). intro H3. elim H3.
+ intros y H4. rewrite (MapSweep_semantics_3 _ _ _ H2 a y H4) in H1. discriminate H1.
+ intro H3. rewrite H3 in H0. discriminate H0.
+ Qed.
+
+ Lemma MapDisjoint_imp_2 :
+ forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_2 m m'.
+ Proof.
+ unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ cut (in_dom A a m = true -> in_dom B a m' = true -> False). intro.
+ elim (option_sum _ (MapGet A m a)). intro H1. elim H1. intros y H2. unfold in_dom at 1 in H0.
+ elim (option_sum _ (MapGet B m' a)). intro H3. elim H3. intros y' H4. unfold in_dom at 1 in H0.
+ rewrite H4 in H0. rewrite H2 in H0. elim (H0 (refl_equal _) (refl_equal _)).
+ intro H3. rewrite H3. reflexivity.
+ intro H1. rewrite H1. case (MapGet B m' a); reflexivity.
+ exact (H a).
+ Qed.
+
+ Lemma MapDisjoint_2_imp :
+ forall (m:Map A) (m':Map B), MapDisjoint_2 m m' -> MapDisjoint m m'.
+ Proof.
+ unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros. elim (in_dom_some _ _ _ H0).
+ intros y H2. elim (in_dom_some _ _ _ H1). intros y' H3.
+ cut (MapGet A (MapDomRestrTo A B m m') a = NONE A). intro.
+ rewrite (MapDomRestrTo_semantics _ _ m m' a) in H4. rewrite H3 in H4. rewrite H2 in H4.
+ discriminate H4.
+ exact (H a).
+ Qed.
+
+ Lemma Map_M0_disjoint : forall m:Map B, MapDisjoint (M0 A) m.
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. discriminate H.
+ Qed.
+
+ Lemma Map_disjoint_M0 : forall m:Map A, MapDisjoint m (M0 B).
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. discriminate H0.
+ Qed.
+
+End MapDisjointDef.
+
+Section MapDisjointExtra.
+
+ Variables A B : Set.
+
+ Lemma MapDisjoint_ext :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ eqmap A m0 m1 ->
+ eqmap B m2 m3 -> MapDisjoint A B m0 m2 -> MapDisjoint A B m1 m3.
+ Proof.
+ intros. apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *.
+ apply eqmap_trans with (m' := MapDomRestrTo A B m0 m2). apply eqmap_sym. apply MapDomRestrTo_ext.
+ assumption.
+ assumption.
+ exact (MapDisjoint_imp_2 _ _ _ _ H1).
+ Qed.
+
+ Lemma MapMerge_disjoint :
+ forall m m':Map A,
+ MapDisjoint A A m m' ->
+ forall a:ad,
+ in_dom A a (MapMerge A m m') =
+ orb (andb (in_dom A a m) (negb (in_dom A a m')))
+ (andb (in_dom A a m') (negb (in_dom A a m))).
+ Proof.
+ unfold MapDisjoint in |- *. intros. rewrite in_dom_merge. elim (sumbool_of_bool (in_dom A a m)).
+ intro H0. rewrite H0. elim (sumbool_of_bool (in_dom A a m')). intro H1. elim (H a H0 H1).
+ intro H1. rewrite H1. reflexivity.
+ intro H0. rewrite H0. simpl in |- *. rewrite andb_b_true. reflexivity.
+ Qed.
+
+ Lemma MapDisjoint_M2_l :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m0 m2.
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m0 a)). intro H2.
+ elim H2. intros y H3. elim (option_sum _ (MapGet B m2 a)). intro H4. elim H4.
+ intros y' H5. apply (H (ad_double a)).
+ rewrite (MapGet_M2_bit_0_0 _ (ad_double a) (ad_double_bit_0 a) m0 m1).
+ rewrite (ad_double_div_2 a). rewrite H3. reflexivity.
+ rewrite (MapGet_M2_bit_0_0 _ (ad_double a) (ad_double_bit_0 a) m2 m3).
+ rewrite (ad_double_div_2 a). rewrite H5. reflexivity.
+ intro H4. rewrite H4 in H1. discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
+ Qed.
+
+ Lemma MapDisjoint_M2_r :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m1 m3.
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m1 a)). intro H2.
+ elim H2. intros y H3. elim (option_sum _ (MapGet B m3 a)). intro H4. elim H4.
+ intros y' H5. apply (H (ad_double_plus_un a)).
+ rewrite
+ (MapGet_M2_bit_0_1 _ (ad_double_plus_un a) (ad_double_plus_un_bit_0 a)
+ m0 m1).
+ rewrite (ad_double_plus_un_div_2 a). rewrite H3. reflexivity.
+ rewrite
+ (MapGet_M2_bit_0_1 _ (ad_double_plus_un a) (ad_double_plus_un_bit_0 a)
+ m2 m3).
+ rewrite (ad_double_plus_un_div_2 a). rewrite H5. reflexivity.
+ intro H4. rewrite H4 in H1. discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
+ Qed.
+
+ Lemma MapDisjoint_M2 :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ MapDisjoint A B m0 m2 ->
+ MapDisjoint A B m1 m3 -> MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3).
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H3.
+ rewrite (MapGet_M2_bit_0_1 A a H3 m0 m1) in H1.
+ rewrite (MapGet_M2_bit_0_1 B a H3 m2 m3) in H2. exact (H0 (ad_div_2 a) H1 H2).
+ intro H3. rewrite (MapGet_M2_bit_0_0 A a H3 m0 m1) in H1.
+ rewrite (MapGet_M2_bit_0_0 B a H3 m2 m3) in H2. exact (H (ad_div_2 a) H1 H2).
+ Qed.
+
+ Lemma MapDisjoint_M1_l :
+ forall (m:Map A) (a:ad) (y:B),
+ MapDisjoint B A (M1 B a y) m -> in_dom A a m = false.
+ Proof.
+ unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0.
+ elim (H a (in_dom_M1_1 B a y) H0).
+ trivial.
+ Qed.
+
+ Lemma MapDisjoint_M1_r :
+ forall (m:Map A) (a:ad) (y:B),
+ MapDisjoint A B m (M1 B a y) -> in_dom A a m = false.
+ Proof.
+ unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0.
+ elim (H a H0 (in_dom_M1_1 B a y)).
+ trivial.
+ Qed.
+
+ Lemma MapDisjoint_M1_conv_l :
+ forall (m:Map A) (a:ad) (y:B),
+ in_dom A a m = false -> MapDisjoint B A (M1 B a y) m.
+ Proof.
+ unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H0) in H. rewrite H1 in H.
+ discriminate H.
+ Qed.
+
+ Lemma MapDisjoint_M1_conv_r :
+ forall (m:Map A) (a:ad) (y:B),
+ in_dom A a m = false -> MapDisjoint A B m (M1 B a y).
+ Proof.
+ unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H1) in H. rewrite H0 in H.
+ discriminate H.
+ Qed.
+
+ Lemma MapDisjoint_sym :
+ forall (m:Map A) (m':Map B), MapDisjoint A B m m' -> MapDisjoint B A m' m.
+ Proof.
+ unfold MapDisjoint in |- *. intros. exact (H _ H1 H0).
+ Qed.
+
+ Lemma MapDisjoint_empty :
+ forall m:Map A, MapDisjoint A A m m -> eqmap A m (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite <- (MapDomRestrTo_idempotent A m a).
+ exact (MapDisjoint_imp_2 A A m m H a).
+ Qed.
+
+ Lemma MapDelta_disjoint :
+ forall m m':Map A,
+ MapDisjoint A A m m' -> eqmap A (MapDelta A m m') (MapMerge A m m').
+ Proof.
+ intros.
+ apply eqmap_trans with
+ (m' := MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
+ apply MapDelta_as_DomRestrBy.
+ apply eqmap_trans with (m' := MapDomRestrBy A A (MapMerge A m m') (M0 A)).
+ apply MapDomRestrBy_ext. apply eqmap_refl.
+ exact (MapDisjoint_imp_2 A A m m' H).
+ apply MapDomRestrBy_m_empty.
+ Qed.
+
+ Variable C : Set.
+
+ Lemma MapDomRestr_disjoint :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ MapDisjoint A B (MapDomRestrTo A C m m'') (MapDomRestrBy B C m' m'').
+ Proof.
+ unfold MapDisjoint in |- *. intros m m' m'' a. rewrite in_dom_restrto. rewrite in_dom_restrby.
+ intros. elim (andb_prop _ _ H). elim (andb_prop _ _ H0). intros. rewrite H4 in H2.
+ discriminate H2.
+ Qed.
+
+ Lemma MapDelta_RestrTo_disjoint :
+ forall m m':Map A,
+ MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m m').
+ Proof.
+ unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto.
+ intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H.
+ Qed.
+
+ Lemma MapDelta_RestrTo_disjoint_2 :
+ forall m m':Map A,
+ MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m' m).
+ Proof.
+ unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto.
+ intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H.
+ Qed.
+
+ Variable D : Set.
+
+ Lemma MapSubset_Disjoint :
+ forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m m' ->
+ MapSubset _ _ m'' m''' ->
+ MapDisjoint _ _ m' m''' -> MapDisjoint _ _ m m''.
+ Proof.
+ unfold MapSubset, MapDisjoint in |- *. intros. exact (H1 _ (H _ H2) (H0 _ H3)).
+ Qed.
+
+ Lemma MapSubset_Disjoint_l :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ MapSubset _ _ m m' -> MapDisjoint _ _ m' m'' -> MapDisjoint _ _ m m''.
+ Proof.
+ unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ (H _ H1) H2).
+ Qed.
+
+ Lemma MapSubset_Disjoint_r :
+ forall (m:Map A) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m'' m''' ->
+ MapDisjoint _ _ m m''' -> MapDisjoint _ _ m m''.
+ Proof.
+ unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ H1 (H _ H2)).
+ Qed.
+
+End MapDisjointExtra. \ No newline at end of file