summaryrefslogtreecommitdiff
path: root/theories/IntMap/Mapiter.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Mapiter.v')
-rw-r--r--theories/IntMap/Mapiter.v620
1 files changed, 620 insertions, 0 deletions
diff --git a/theories/IntMap/Mapiter.v b/theories/IntMap/Mapiter.v
new file mode 100644
index 00000000..f5d443cc
--- /dev/null
+++ b/theories/IntMap/Mapiter.v
@@ -0,0 +1,620 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapiter.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Fset.
+Require Import List.
+
+Section MapIter.
+
+ Variable A : Set.
+
+ Section MapSweepDef.
+
+ Variable f : ad -> A -> bool.
+
+ Definition MapSweep2 (a0:ad) (y:A) :=
+ if f a0 y then SOME _ (a0, y) else NONE _.
+
+ Fixpoint MapSweep1 (pf:ad -> ad) (m:Map A) {struct m} :
+ option (ad * A) :=
+ match m with
+ | M0 => NONE _
+ | M1 a y => MapSweep2 (pf a) y
+ | M2 m m' =>
+ match MapSweep1 (fun a:ad => pf (ad_double a)) m with
+ | SOME r => SOME _ r
+ | NONE => MapSweep1 (fun a:ad => pf (ad_double_plus_un a)) m'
+ end
+ end.
+
+ Definition MapSweep (m:Map A) := MapSweep1 (fun a:ad => a) m.
+
+ Lemma MapSweep_semantics_1_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> f a y = true.
+ Proof.
+ simple induction m. intros. discriminate H.
+ simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (f (pf a) y)). intro H. unfold MapSweep2 in |- *.
+ rewrite H. intro H0. inversion H0. rewrite <- H3. assumption.
+ intro H. unfold MapSweep2 in |- *. rewrite H. intro H0. discriminate H0.
+ simpl in |- *. intros. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)).
+ intro H2. elim H2. intros r H3. rewrite H3 in H1. inversion H1. rewrite H5 in H3.
+ exact (H (fun a0:ad => pf (ad_double a0)) a y H3).
+ intro H2. rewrite H2 in H1. exact (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1).
+ Qed.
+
+ Lemma MapSweep_semantics_1 :
+ forall (m:Map A) (a:ad) (y:A), MapSweep m = SOME _ (a, y) -> f a y = true.
+ Proof.
+ intros. exact (MapSweep_semantics_1_1 m (fun a:ad => a) a y H).
+ Qed.
+
+ Lemma MapSweep_semantics_2_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> {a' : ad | a = pf a'}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ simpl in |- *. unfold MapSweep2 in |- *. intros a y pf a0 y0. case (f (pf a) y). intros. split with a.
+ inversion H. reflexivity.
+ intro. discriminate H.
+ intros m0 H m1 H0 pf a y. simpl in |- *.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H1. elim H1.
+ intros r H2. rewrite H2. intro H3. inversion H3. rewrite H5 in H2.
+ elim (H (fun a0:ad => pf (ad_double a0)) a y H2). intros a0 H6. split with (ad_double a0).
+ assumption.
+ intro H1. rewrite H1. intro H2. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H2).
+ intros a0 H3. split with (ad_double_plus_un a0). assumption.
+ Qed.
+
+ Lemma MapSweep_semantics_2_2 :
+ forall (m:Map A) (pf fp:ad -> ad),
+ (forall a0:ad, fp (pf a0) = a0) ->
+ forall (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> MapGet A m (fp a) = SOME _ y.
+ Proof.
+ simple induction m. intros. discriminate H0.
+ simpl in |- *. intros a y pf fp H a0 y0. unfold MapSweep2 in |- *. elim (sumbool_of_bool (f (pf a) y)).
+ intro H0. rewrite H0. intro H1. inversion H1. rewrite (H a). rewrite (ad_eq_correct a).
+ reflexivity.
+ intro H0. rewrite H0. intro H1. discriminate H1.
+ intros. rewrite (MapGet_M2_bit_0_if A m0 m1 (fp a)). elim (sumbool_of_bool (ad_bit_0 (fp a))).
+ intro H3. rewrite H3. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)).
+ intro H4. simpl in H2. apply
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => ad_div_2 (fp a0))).
+ intro. rewrite H1. apply ad_double_plus_un_div_2.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H5. elim H5.
+ intros r H6. rewrite H6 in H2. inversion H2. rewrite H8 in H6.
+ elim (MapSweep_semantics_2_1 m0 (fun a0:ad => pf (ad_double a0)) a y H6). intros a0 H9.
+ rewrite H9 in H3. rewrite (H1 (ad_double a0)) in H3. rewrite (ad_double_bit_0 a0) in H3.
+ discriminate H3.
+ intro H5. rewrite H5 in H2. assumption.
+ intro H4. simpl in H2. rewrite H4 in H2.
+ apply
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => ad_div_2 (fp a0))). intro.
+ rewrite H1. apply ad_double_plus_un_div_2.
+ assumption.
+ intro H3. rewrite H3. simpl in H2.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H4. elim H4.
+ intros r H5. rewrite H5 in H2. inversion H2. rewrite H7 in H5.
+ apply
+ (H (fun a0:ad => pf (ad_double a0)) (fun a0:ad => ad_div_2 (fp a0))). intro. rewrite H1.
+ apply ad_double_div_2.
+ assumption.
+ intro H4. rewrite H4 in H2.
+ elim
+ (MapSweep_semantics_2_1 m1 (fun a0:ad => pf (ad_double_plus_un a0)) a y
+ H2).
+ intros a0 H5. rewrite H5 in H3. rewrite (H1 (ad_double_plus_un a0)) in H3.
+ rewrite (ad_double_plus_un_bit_0 a0) in H3. discriminate H3.
+ Qed.
+
+ Lemma MapSweep_semantics_2 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapSweep m = SOME _ (a, y) -> MapGet A m a = SOME _ y.
+ Proof.
+ intros.
+ exact
+ (MapSweep_semantics_2_2 m (fun a0:ad => a0) (fun a0:ad => a0)
+ (fun a0:ad => refl_equal a0) a y H).
+ Qed.
+
+ Lemma MapSweep_semantics_3_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ MapSweep1 pf m = NONE _ ->
+ forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f (pf a) y = false.
+ Proof.
+ simple induction m. intros. discriminate H0.
+ simpl in |- *. unfold MapSweep2 in |- *. intros a y pf. elim (sumbool_of_bool (f (pf a) y)). intro H.
+ rewrite H. intro. discriminate H0.
+ intro H. rewrite H. intros H0 a0 y0. elim (sumbool_of_bool (ad_eq a a0)). intro H1. rewrite H1.
+ intro H2. inversion H2. rewrite <- H4. rewrite <- (ad_eq_complete _ _ H1). assumption.
+ intro H1. rewrite H1. intro. discriminate H2.
+ intros. simpl in H1. elim (option_sum (ad * A) (MapSweep1 (fun a:ad => pf (ad_double a)) m0)).
+ intro H3. elim H3. intros r H4. rewrite H4 in H1. discriminate H1.
+ intro H3. rewrite H3 in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H4.
+ rewrite (MapGet_M2_bit_0_1 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double_plus_un a H4).
+ exact (H0 (fun a:ad => pf (ad_double_plus_un a)) H1 (ad_div_2 a) y H2).
+ intro H4. rewrite (MapGet_M2_bit_0_0 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double a H4).
+ exact (H (fun a:ad => pf (ad_double a)) H3 (ad_div_2 a) y H2).
+ Qed.
+
+ Lemma MapSweep_semantics_3 :
+ forall m:Map A,
+ MapSweep m = NONE _ ->
+ forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f a y = false.
+ Proof.
+ intros.
+ exact (MapSweep_semantics_3_1 m (fun a0:ad => a0) H a y H0).
+ Qed.
+
+ Lemma MapSweep_semantics_4_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapGet A m a = SOME A y ->
+ f (pf a) y = true ->
+ {a' : ad & {y' : A | MapSweep1 pf m = SOME _ (a', y')}}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ intros. elim (sumbool_of_bool (ad_eq a a1)). intro H1. split with (pf a1). split with y.
+ rewrite (ad_eq_complete _ _ H1). unfold MapSweep1, MapSweep2 in |- *.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 _ a1 a0) in H.
+ inversion H. rewrite H0. reflexivity.
+
+ intro H1. rewrite (M1_semantics_2 _ a a1 a0 H1) in H. discriminate H.
+
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H3.
+ rewrite (MapGet_M2_bit_0_1 _ _ H3 m0 m1) in H1.
+ rewrite <- (ad_div_2_double_plus_un a H3) in H2.
+ elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4.
+ intros y'' H5. simpl in |- *. elim (option_sum _ (MapSweep1 (fun a:ad => pf (ad_double a)) m0)).
+ intro H6. elim H6. intro r. elim r. intros a''' y''' H7. rewrite H7. split with a'''.
+ split with y'''. reflexivity.
+ intro H6. rewrite H6. split with a''. split with y''. assumption.
+ intro H3. rewrite (MapGet_M2_bit_0_0 _ _ H3 m0 m1) in H1.
+ rewrite <- (ad_div_2_double a H3) in H2.
+ elim (H (fun a0:ad => pf (ad_double a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4.
+ intros y'' H5. split with a''. split with y''. simpl in |- *. rewrite H5. reflexivity.
+ Qed.
+
+ Lemma MapSweep_semantics_4 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y ->
+ f a y = true -> {a' : ad & {y' : A | MapSweep m = SOME _ (a', y')}}.
+ Proof.
+ intros. exact (MapSweep_semantics_4_1 m (fun a0:ad => a0) a y H H0).
+ Qed.
+
+ End MapSweepDef.
+
+ Variable B : Set.
+
+ Fixpoint MapCollect1 (f:ad -> A -> Map B) (pf:ad -> ad)
+ (m:Map A) {struct m} : Map B :=
+ match m with
+ | M0 => M0 B
+ | M1 a y => f (pf a) y
+ | M2 m1 m2 =>
+ MapMerge B (MapCollect1 f (fun a0:ad => pf (ad_double a0)) m1)
+ (MapCollect1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2)
+ end.
+
+ Definition MapCollect (f:ad -> A -> Map B) (m:Map A) :=
+ MapCollect1 f (fun a:ad => a) m.
+
+ Section MapFoldDef.
+
+ Variable M : Set.
+ Variable neutral : M.
+ Variable op : M -> M -> M.
+
+ Fixpoint MapFold1 (f:ad -> A -> M) (pf:ad -> ad)
+ (m:Map A) {struct m} : M :=
+ match m with
+ | M0 => neutral
+ | M1 a y => f (pf a) y
+ | M2 m1 m2 =>
+ op (MapFold1 f (fun a0:ad => pf (ad_double a0)) m1)
+ (MapFold1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2)
+ end.
+
+ Definition MapFold (f:ad -> A -> M) (m:Map A) :=
+ MapFold1 f (fun a:ad => a) m.
+
+ Lemma MapFold_empty : forall f:ad -> A -> M, MapFold f (M0 A) = neutral.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapFold_M1 :
+ forall (f:ad -> A -> M) (a:ad) (y:A), MapFold f (M1 A a y) = f a y.
+ Proof.
+ trivial.
+ Qed.
+
+ Variable State : Set.
+ Variable f : State -> ad -> A -> State * M.
+
+ Fixpoint MapFold1_state (state:State) (pf:ad -> ad)
+ (m:Map A) {struct m} : State * M :=
+ match m with
+ | M0 => (state, neutral)
+ | M1 a y => f state (pf a) y
+ | M2 m1 m2 =>
+ match MapFold1_state state (fun a0:ad => pf (ad_double a0)) m1 with
+ | (state1, x1) =>
+ match
+ MapFold1_state state1
+ (fun a0:ad => pf (ad_double_plus_un a0)) m2
+ with
+ | (state2, x2) => (state2, op x1 x2)
+ end
+ end
+ end.
+
+ Definition MapFold_state (state:State) :=
+ MapFold1_state state (fun a:ad => a).
+
+ Lemma pair_sp : forall (B C:Set) (x:B * C), x = (fst x, snd x).
+ Proof.
+ simple induction x. trivial.
+ Qed.
+
+ Lemma MapFold_state_stateless_1 :
+ forall (m:Map A) (g:ad -> A -> M) (pf:ad -> ad),
+ (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
+ forall state:State, snd (MapFold1_state state pf m) = MapFold1 g pf m.
+ Proof.
+ simple induction m. trivial.
+ intros. simpl in |- *. apply H.
+ intros. simpl in |- *. rewrite
+ (pair_sp _ _ (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0))
+ .
+ rewrite (H g (fun a0:ad => pf (ad_double a0)) H1 state).
+ rewrite
+ (pair_sp _ _
+ (MapFold1_state
+ (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0))
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1))
+ .
+ simpl in |- *.
+ rewrite
+ (H0 g (fun a0:ad => pf (ad_double_plus_un a0)) H1
+ (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0)))
+ .
+ reflexivity.
+ Qed.
+
+ Lemma MapFold_state_stateless :
+ forall g:ad -> A -> M,
+ (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
+ forall (state:State) (m:Map A),
+ snd (MapFold_state state m) = MapFold g m.
+ Proof.
+ intros. exact (MapFold_state_stateless_1 m g (fun a0:ad => a0) H state).
+ Qed.
+
+ End MapFoldDef.
+
+ Lemma MapCollect_as_Fold :
+ forall (f:ad -> A -> Map B) (m:Map A),
+ MapCollect f m = MapFold (Map B) (M0 B) (MapMerge B) f m.
+ Proof.
+ simple induction m; trivial.
+ Qed.
+
+ Definition alist := list (ad * A).
+ Definition anil := nil (A:=(ad * A)).
+ Definition acons := cons (A:=(ad * A)).
+ Definition aapp := app (A:=(ad * A)).
+
+ Definition alist_of_Map :=
+ MapFold alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil).
+
+ Fixpoint alist_semantics (l:alist) : ad -> option A :=
+ match l with
+ | nil => fun _:ad => NONE A
+ | (a, y) :: l' =>
+ fun a0:ad => if ad_eq a a0 then SOME A y else alist_semantics l' a0
+ end.
+
+ Lemma alist_semantics_app :
+ forall (l l':alist) (a:ad),
+ alist_semantics (aapp l l') a =
+ match alist_semantics l a with
+ | NONE => alist_semantics l' a
+ | SOME y => SOME A y
+ end.
+ Proof.
+ unfold aapp in |- *. simple induction l. trivial.
+ intros. elim a. intros a1 y1. simpl in |- *. case (ad_eq a1 a0). reflexivity.
+ apply H.
+ Qed.
+
+ Lemma alist_of_Map_semantics_1_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ alist_semantics
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) pf
+ m) a = SOME A y -> {a' : ad | a = pf a'}.
+ Proof.
+ simple induction m. simpl in |- *. intros. discriminate H.
+ simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (ad_eq (pf a) a0)). intro H. rewrite H.
+ intro H0. split with a. rewrite (ad_eq_complete _ _ H). reflexivity.
+ intro H. rewrite H. intro H0. discriminate H0.
+ intros. change
+ (alist_semantics
+ (aapp
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1)) a =
+ SOME A y) in H1.
+ rewrite
+ (alist_semantics_app
+ (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1) a)
+ in H1.
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double a0)) m0) a)).
+ intro H2. elim H2. intros y0 H3. elim (H (fun a0:ad => pf (ad_double a0)) a y0 H3). intros a0 H4.
+ split with (ad_double a0). assumption.
+ intro H2. rewrite H2 in H1. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1).
+ intros a0 H3. split with (ad_double_plus_un a0). assumption.
+ Qed.
+
+ Definition ad_inj (pf:ad -> ad) :=
+ forall a0 a1:ad, pf a0 = pf a1 -> a0 = a1.
+
+ Lemma ad_comp_double_inj :
+ forall pf:ad -> ad, ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double a0)).
+ Proof.
+ unfold ad_inj in |- *. intros. apply ad_double_inj. exact (H _ _ H0).
+ Qed.
+
+ Lemma ad_comp_double_plus_un_inj :
+ forall pf:ad -> ad,
+ ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double_plus_un a0)).
+ Proof.
+ unfold ad_inj in |- *. intros. apply ad_double_plus_un_inj. exact (H _ _ H0).
+ Qed.
+
+ Lemma alist_of_Map_semantics_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ ad_inj pf ->
+ forall a:ad,
+ MapGet A m a =
+ alist_semantics
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ pf m) (pf a).
+ Proof.
+ simple induction m. trivial.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0.
+ rewrite (ad_eq_complete _ _ H0). rewrite (ad_eq_correct (pf a1)). reflexivity.
+ intro H0. rewrite H0. elim (sumbool_of_bool (ad_eq (pf a) (pf a1))). intro H1.
+ rewrite (H a a1 (ad_eq_complete _ _ H1)) in H0. rewrite (ad_eq_correct a1) in H0.
+ discriminate H0.
+ intro H1. rewrite H1. reflexivity.
+ intros. change
+ (MapGet A (M2 A m0 m1) a =
+ alist_semantics
+ (aapp
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1)) (
+ pf a)) in |- *.
+ rewrite alist_semantics_app. rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ elim (ad_double_or_double_plus_un a). intro H2. elim H2. intros a0 H3. rewrite H3.
+ rewrite (ad_double_bit_0 a0).
+ rewrite <-
+ (H (fun a1:ad => pf (ad_double a1)) (ad_comp_double_inj pf H1) a0)
+ .
+ rewrite ad_double_div_2. case (MapGet A m0 a0).
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a1:ad) (y:A) => acons (a1, y) anil)
+ (fun a1:ad => pf (ad_double_plus_un a1)) m1)
+ (pf (ad_double a0)))).
+ intro H4. elim H4. intros y H5.
+ elim
+ (alist_of_Map_semantics_1_1 m1 (fun a1:ad => pf (ad_double_plus_un a1))
+ (pf (ad_double a0)) y H5).
+ intros a1 H6. cut (ad_bit_0 (ad_double a0) = ad_bit_0 (ad_double_plus_un a1)).
+ intro. rewrite (ad_double_bit_0 a0) in H7. rewrite (ad_double_plus_un_bit_0 a1) in H7.
+ discriminate H7.
+ rewrite (H1 (ad_double a0) (ad_double_plus_un a1) H6). reflexivity.
+ intro H4. rewrite H4. reflexivity.
+ trivial.
+ intro H2. elim H2. intros a0 H3. rewrite H3. rewrite (ad_double_plus_un_bit_0 a0).
+ rewrite <-
+ (H0 (fun a1:ad => pf (ad_double_plus_un a1))
+ (ad_comp_double_plus_un_inj pf H1) a0).
+ rewrite ad_double_plus_un_div_2.
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a1:ad) (y:A) => acons (a1, y) anil)
+ (fun a1:ad => pf (ad_double a1)) m0)
+ (pf (ad_double_plus_un a0)))).
+ intro H4. elim H4. intros y H5.
+ elim
+ (alist_of_Map_semantics_1_1 m0 (fun a1:ad => pf (ad_double a1))
+ (pf (ad_double_plus_un a0)) y H5).
+ intros a1 H6. cut (ad_bit_0 (ad_double_plus_un a0) = ad_bit_0 (ad_double a1)).
+ intro H7. rewrite (ad_double_plus_un_bit_0 a0) in H7. rewrite (ad_double_bit_0 a1) in H7.
+ discriminate H7.
+ rewrite (H1 (ad_double_plus_un a0) (ad_double a1) H6). reflexivity.
+ intro H4. rewrite H4. reflexivity.
+ Qed.
+
+ Lemma alist_of_Map_semantics :
+ forall m:Map A, eqm A (MapGet A m) (alist_semantics (alist_of_Map m)).
+ Proof.
+ unfold eqm in |- *. intros. exact
+ (alist_of_Map_semantics_1 m (fun a0:ad => a0)
+ (fun (a0 a1:ad) (p:a0 = a1) => p) a).
+ Qed.
+
+ Fixpoint Map_of_alist (l:alist) : Map A :=
+ match l with
+ | nil => M0 A
+ | (a, y) :: l' => MapPut A (Map_of_alist l') a y
+ end.
+
+ Lemma Map_of_alist_semantics :
+ forall l:alist, eqm A (alist_semantics l) (MapGet A (Map_of_alist l)).
+ Proof.
+ unfold eqm in |- *. simple induction l. trivial.
+ intros r l0 H a. elim r. intros a0 y0. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 a)).
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0).
+ rewrite (MapPut_semantics A (Map_of_alist l0) a y0 a). rewrite (ad_eq_correct a).
+ reflexivity.
+ intro H0. rewrite H0. rewrite (MapPut_semantics A (Map_of_alist l0) a0 y0 a).
+ rewrite H0. apply H.
+ Qed.
+
+ Lemma Map_of_alist_of_Map :
+ forall m:Map A, eqmap A (Map_of_alist (alist_of_Map m)) m.
+ Proof.
+ unfold eqmap in |- *. intro. apply eqm_trans with (f' := alist_semantics (alist_of_Map m)).
+ apply eqm_sym. apply Map_of_alist_semantics.
+ apply eqm_sym. apply alist_of_Map_semantics.
+ Qed.
+
+ Lemma alist_of_Map_of_alist :
+ forall l:alist,
+ eqm A (alist_semantics (alist_of_Map (Map_of_alist l)))
+ (alist_semantics l).
+ Proof.
+ intro. apply eqm_trans with (f' := MapGet A (Map_of_alist l)).
+ apply eqm_sym. apply alist_of_Map_semantics.
+ apply eqm_sym. apply Map_of_alist_semantics.
+ Qed.
+
+ Lemma fold_right_aapp :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ forall (f:ad -> A -> M) (l l':alist),
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral (aapp l l') =
+ op
+ (fold_right
+ (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
+ l)
+ (fold_right
+ (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
+ l').
+ Proof.
+ simple induction l. simpl in |- *. intro. rewrite H0. reflexivity.
+ intros r l0 H1 l'. elim r. intros a y. simpl in |- *. rewrite H. rewrite (H1 l'). reflexivity.
+ Qed.
+
+ Lemma MapFold_as_fold_1 :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ (forall a:M, op a neutral = a) ->
+ forall (f:ad -> A -> M) (m:Map A) (pf:ad -> ad),
+ MapFold1 M neutral op f pf m =
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral
+ (MapFold1 alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil) pf
+ m).
+ Proof.
+ simple induction m. trivial.
+ intros. simpl in |- *. rewrite H1. reflexivity.
+ intros. simpl in |- *. rewrite (fold_right_aapp M neutral op H H0 f).
+ rewrite (H2 (fun a0:ad => pf (ad_double a0))). rewrite (H3 (fun a0:ad => pf (ad_double_plus_un a0))).
+ reflexivity.
+ Qed.
+
+ Lemma MapFold_as_fold :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ (forall a:M, op a neutral = a) ->
+ forall (f:ad -> A -> M) (m:Map A),
+ MapFold M neutral op f m =
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral (alist_of_Map m).
+ Proof.
+ intros. exact (MapFold_as_fold_1 M neutral op H H0 H1 f m (fun a0:ad => a0)).
+ Qed.
+
+ Lemma alist_MapMerge_semantics :
+ forall m m':Map A,
+ eqm A (alist_semantics (aapp (alist_of_Map m') (alist_of_Map m)))
+ (alist_semantics (alist_of_Map (MapMerge A m m'))).
+ Proof.
+ unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
+ rewrite <- (alist_of_Map_semantics m' a).
+ rewrite <- (alist_of_Map_semantics (MapMerge A m m') a).
+ rewrite (MapMerge_semantics A m m' a). reflexivity.
+ Qed.
+
+ Lemma alist_MapMerge_semantics_disjoint :
+ forall m m':Map A,
+ eqmap A (MapDomRestrTo A A m m') (M0 A) ->
+ eqm A (alist_semantics (aapp (alist_of_Map m) (alist_of_Map m')))
+ (alist_semantics (alist_of_Map (MapMerge A m m'))).
+ Proof.
+ unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
+ rewrite <- (alist_of_Map_semantics m' a).
+ rewrite <- (alist_of_Map_semantics (MapMerge A m m') a). rewrite (MapMerge_semantics A m m' a).
+ elim (option_sum _ (MapGet A m a)). intro H0. elim H0. intros y H1. rewrite H1.
+ elim (option_sum _ (MapGet A m' a)). intro H2. elim H2. intros y' H3.
+ cut (MapGet A (MapDomRestrTo A A m m') a = NONE A).
+ rewrite (MapDomRestrTo_semantics A A m m' a). rewrite H3. rewrite H1. intro. discriminate H4.
+ exact (H a).
+ intro H2. rewrite H2. reflexivity.
+ intro H0. rewrite H0. case (MapGet A m' a); trivial.
+ Qed.
+
+ Lemma alist_semantics_disjoint_comm :
+ forall l l':alist,
+ eqmap A (MapDomRestrTo A A (Map_of_alist l) (Map_of_alist l')) (M0 A) ->
+ eqm A (alist_semantics (aapp l l')) (alist_semantics (aapp l' l)).
+ Proof.
+ unfold eqm in |- *. intros. rewrite (alist_semantics_app l l' a). rewrite (alist_semantics_app l' l a).
+ rewrite <- (alist_of_Map_of_alist l a). rewrite <- (alist_of_Map_of_alist l' a).
+ rewrite <-
+ (alist_semantics_app (alist_of_Map (Map_of_alist l))
+ (alist_of_Map (Map_of_alist l')) a).
+ rewrite <-
+ (alist_semantics_app (alist_of_Map (Map_of_alist l'))
+ (alist_of_Map (Map_of_alist l)) a).
+ rewrite (alist_MapMerge_semantics (Map_of_alist l) (Map_of_alist l') a).
+ rewrite
+ (alist_MapMerge_semantics_disjoint (Map_of_alist l) (
+ Map_of_alist l') H a).
+ reflexivity.
+ Qed.
+
+End MapIter.