diff options
Diffstat (limited to 'theories/IntMap/Mapiter.v')
-rw-r--r-- | theories/IntMap/Mapiter.v | 620 |
1 files changed, 620 insertions, 0 deletions
diff --git a/theories/IntMap/Mapiter.v b/theories/IntMap/Mapiter.v new file mode 100644 index 00000000..f5d443cc --- /dev/null +++ b/theories/IntMap/Mapiter.v @@ -0,0 +1,620 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(*i $Id: Mapiter.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*) + +Require Import Bool. +Require Import Sumbool. +Require Import ZArith. +Require Import Addr. +Require Import Adist. +Require Import Addec. +Require Import Map. +Require Import Mapaxioms. +Require Import Fset. +Require Import List. + +Section MapIter. + + Variable A : Set. + + Section MapSweepDef. + + Variable f : ad -> A -> bool. + + Definition MapSweep2 (a0:ad) (y:A) := + if f a0 y then SOME _ (a0, y) else NONE _. + + Fixpoint MapSweep1 (pf:ad -> ad) (m:Map A) {struct m} : + option (ad * A) := + match m with + | M0 => NONE _ + | M1 a y => MapSweep2 (pf a) y + | M2 m m' => + match MapSweep1 (fun a:ad => pf (ad_double a)) m with + | SOME r => SOME _ r + | NONE => MapSweep1 (fun a:ad => pf (ad_double_plus_un a)) m' + end + end. + + Definition MapSweep (m:Map A) := MapSweep1 (fun a:ad => a) m. + + Lemma MapSweep_semantics_1_1 : + forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A), + MapSweep1 pf m = SOME _ (a, y) -> f a y = true. + Proof. + simple induction m. intros. discriminate H. + simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (f (pf a) y)). intro H. unfold MapSweep2 in |- *. + rewrite H. intro H0. inversion H0. rewrite <- H3. assumption. + intro H. unfold MapSweep2 in |- *. rewrite H. intro H0. discriminate H0. + simpl in |- *. intros. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). + intro H2. elim H2. intros r H3. rewrite H3 in H1. inversion H1. rewrite H5 in H3. + exact (H (fun a0:ad => pf (ad_double a0)) a y H3). + intro H2. rewrite H2 in H1. exact (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1). + Qed. + + Lemma MapSweep_semantics_1 : + forall (m:Map A) (a:ad) (y:A), MapSweep m = SOME _ (a, y) -> f a y = true. + Proof. + intros. exact (MapSweep_semantics_1_1 m (fun a:ad => a) a y H). + Qed. + + Lemma MapSweep_semantics_2_1 : + forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A), + MapSweep1 pf m = SOME _ (a, y) -> {a' : ad | a = pf a'}. + Proof. + simple induction m. intros. discriminate H. + simpl in |- *. unfold MapSweep2 in |- *. intros a y pf a0 y0. case (f (pf a) y). intros. split with a. + inversion H. reflexivity. + intro. discriminate H. + intros m0 H m1 H0 pf a y. simpl in |- *. + elim + (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H1. elim H1. + intros r H2. rewrite H2. intro H3. inversion H3. rewrite H5 in H2. + elim (H (fun a0:ad => pf (ad_double a0)) a y H2). intros a0 H6. split with (ad_double a0). + assumption. + intro H1. rewrite H1. intro H2. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H2). + intros a0 H3. split with (ad_double_plus_un a0). assumption. + Qed. + + Lemma MapSweep_semantics_2_2 : + forall (m:Map A) (pf fp:ad -> ad), + (forall a0:ad, fp (pf a0) = a0) -> + forall (a:ad) (y:A), + MapSweep1 pf m = SOME _ (a, y) -> MapGet A m (fp a) = SOME _ y. + Proof. + simple induction m. intros. discriminate H0. + simpl in |- *. intros a y pf fp H a0 y0. unfold MapSweep2 in |- *. elim (sumbool_of_bool (f (pf a) y)). + intro H0. rewrite H0. intro H1. inversion H1. rewrite (H a). rewrite (ad_eq_correct a). + reflexivity. + intro H0. rewrite H0. intro H1. discriminate H1. + intros. rewrite (MapGet_M2_bit_0_if A m0 m1 (fp a)). elim (sumbool_of_bool (ad_bit_0 (fp a))). + intro H3. rewrite H3. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). + intro H4. simpl in H2. apply + (H0 (fun a0:ad => pf (ad_double_plus_un a0)) + (fun a0:ad => ad_div_2 (fp a0))). + intro. rewrite H1. apply ad_double_plus_un_div_2. + elim + (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H5. elim H5. + intros r H6. rewrite H6 in H2. inversion H2. rewrite H8 in H6. + elim (MapSweep_semantics_2_1 m0 (fun a0:ad => pf (ad_double a0)) a y H6). intros a0 H9. + rewrite H9 in H3. rewrite (H1 (ad_double a0)) in H3. rewrite (ad_double_bit_0 a0) in H3. + discriminate H3. + intro H5. rewrite H5 in H2. assumption. + intro H4. simpl in H2. rewrite H4 in H2. + apply + (H0 (fun a0:ad => pf (ad_double_plus_un a0)) + (fun a0:ad => ad_div_2 (fp a0))). intro. + rewrite H1. apply ad_double_plus_un_div_2. + assumption. + intro H3. rewrite H3. simpl in H2. + elim + (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H4. elim H4. + intros r H5. rewrite H5 in H2. inversion H2. rewrite H7 in H5. + apply + (H (fun a0:ad => pf (ad_double a0)) (fun a0:ad => ad_div_2 (fp a0))). intro. rewrite H1. + apply ad_double_div_2. + assumption. + intro H4. rewrite H4 in H2. + elim + (MapSweep_semantics_2_1 m1 (fun a0:ad => pf (ad_double_plus_un a0)) a y + H2). + intros a0 H5. rewrite H5 in H3. rewrite (H1 (ad_double_plus_un a0)) in H3. + rewrite (ad_double_plus_un_bit_0 a0) in H3. discriminate H3. + Qed. + + Lemma MapSweep_semantics_2 : + forall (m:Map A) (a:ad) (y:A), + MapSweep m = SOME _ (a, y) -> MapGet A m a = SOME _ y. + Proof. + intros. + exact + (MapSweep_semantics_2_2 m (fun a0:ad => a0) (fun a0:ad => a0) + (fun a0:ad => refl_equal a0) a y H). + Qed. + + Lemma MapSweep_semantics_3_1 : + forall (m:Map A) (pf:ad -> ad), + MapSweep1 pf m = NONE _ -> + forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f (pf a) y = false. + Proof. + simple induction m. intros. discriminate H0. + simpl in |- *. unfold MapSweep2 in |- *. intros a y pf. elim (sumbool_of_bool (f (pf a) y)). intro H. + rewrite H. intro. discriminate H0. + intro H. rewrite H. intros H0 a0 y0. elim (sumbool_of_bool (ad_eq a a0)). intro H1. rewrite H1. + intro H2. inversion H2. rewrite <- H4. rewrite <- (ad_eq_complete _ _ H1). assumption. + intro H1. rewrite H1. intro. discriminate H2. + intros. simpl in H1. elim (option_sum (ad * A) (MapSweep1 (fun a:ad => pf (ad_double a)) m0)). + intro H3. elim H3. intros r H4. rewrite H4 in H1. discriminate H1. + intro H3. rewrite H3 in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H4. + rewrite (MapGet_M2_bit_0_1 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double_plus_un a H4). + exact (H0 (fun a:ad => pf (ad_double_plus_un a)) H1 (ad_div_2 a) y H2). + intro H4. rewrite (MapGet_M2_bit_0_0 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double a H4). + exact (H (fun a:ad => pf (ad_double a)) H3 (ad_div_2 a) y H2). + Qed. + + Lemma MapSweep_semantics_3 : + forall m:Map A, + MapSweep m = NONE _ -> + forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f a y = false. + Proof. + intros. + exact (MapSweep_semantics_3_1 m (fun a0:ad => a0) H a y H0). + Qed. + + Lemma MapSweep_semantics_4_1 : + forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A), + MapGet A m a = SOME A y -> + f (pf a) y = true -> + {a' : ad & {y' : A | MapSweep1 pf m = SOME _ (a', y')}}. + Proof. + simple induction m. intros. discriminate H. + intros. elim (sumbool_of_bool (ad_eq a a1)). intro H1. split with (pf a1). split with y. + rewrite (ad_eq_complete _ _ H1). unfold MapSweep1, MapSweep2 in |- *. + rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 _ a1 a0) in H. + inversion H. rewrite H0. reflexivity. + + intro H1. rewrite (M1_semantics_2 _ a a1 a0 H1) in H. discriminate H. + + intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H3. + rewrite (MapGet_M2_bit_0_1 _ _ H3 m0 m1) in H1. + rewrite <- (ad_div_2_double_plus_un a H3) in H2. + elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4. + intros y'' H5. simpl in |- *. elim (option_sum _ (MapSweep1 (fun a:ad => pf (ad_double a)) m0)). + intro H6. elim H6. intro r. elim r. intros a''' y''' H7. rewrite H7. split with a'''. + split with y'''. reflexivity. + intro H6. rewrite H6. split with a''. split with y''. assumption. + intro H3. rewrite (MapGet_M2_bit_0_0 _ _ H3 m0 m1) in H1. + rewrite <- (ad_div_2_double a H3) in H2. + elim (H (fun a0:ad => pf (ad_double a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4. + intros y'' H5. split with a''. split with y''. simpl in |- *. rewrite H5. reflexivity. + Qed. + + Lemma MapSweep_semantics_4 : + forall (m:Map A) (a:ad) (y:A), + MapGet A m a = SOME A y -> + f a y = true -> {a' : ad & {y' : A | MapSweep m = SOME _ (a', y')}}. + Proof. + intros. exact (MapSweep_semantics_4_1 m (fun a0:ad => a0) a y H H0). + Qed. + + End MapSweepDef. + + Variable B : Set. + + Fixpoint MapCollect1 (f:ad -> A -> Map B) (pf:ad -> ad) + (m:Map A) {struct m} : Map B := + match m with + | M0 => M0 B + | M1 a y => f (pf a) y + | M2 m1 m2 => + MapMerge B (MapCollect1 f (fun a0:ad => pf (ad_double a0)) m1) + (MapCollect1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2) + end. + + Definition MapCollect (f:ad -> A -> Map B) (m:Map A) := + MapCollect1 f (fun a:ad => a) m. + + Section MapFoldDef. + + Variable M : Set. + Variable neutral : M. + Variable op : M -> M -> M. + + Fixpoint MapFold1 (f:ad -> A -> M) (pf:ad -> ad) + (m:Map A) {struct m} : M := + match m with + | M0 => neutral + | M1 a y => f (pf a) y + | M2 m1 m2 => + op (MapFold1 f (fun a0:ad => pf (ad_double a0)) m1) + (MapFold1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2) + end. + + Definition MapFold (f:ad -> A -> M) (m:Map A) := + MapFold1 f (fun a:ad => a) m. + + Lemma MapFold_empty : forall f:ad -> A -> M, MapFold f (M0 A) = neutral. + Proof. + trivial. + Qed. + + Lemma MapFold_M1 : + forall (f:ad -> A -> M) (a:ad) (y:A), MapFold f (M1 A a y) = f a y. + Proof. + trivial. + Qed. + + Variable State : Set. + Variable f : State -> ad -> A -> State * M. + + Fixpoint MapFold1_state (state:State) (pf:ad -> ad) + (m:Map A) {struct m} : State * M := + match m with + | M0 => (state, neutral) + | M1 a y => f state (pf a) y + | M2 m1 m2 => + match MapFold1_state state (fun a0:ad => pf (ad_double a0)) m1 with + | (state1, x1) => + match + MapFold1_state state1 + (fun a0:ad => pf (ad_double_plus_un a0)) m2 + with + | (state2, x2) => (state2, op x1 x2) + end + end + end. + + Definition MapFold_state (state:State) := + MapFold1_state state (fun a:ad => a). + + Lemma pair_sp : forall (B C:Set) (x:B * C), x = (fst x, snd x). + Proof. + simple induction x. trivial. + Qed. + + Lemma MapFold_state_stateless_1 : + forall (m:Map A) (g:ad -> A -> M) (pf:ad -> ad), + (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) -> + forall state:State, snd (MapFold1_state state pf m) = MapFold1 g pf m. + Proof. + simple induction m. trivial. + intros. simpl in |- *. apply H. + intros. simpl in |- *. rewrite + (pair_sp _ _ (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0)) + . + rewrite (H g (fun a0:ad => pf (ad_double a0)) H1 state). + rewrite + (pair_sp _ _ + (MapFold1_state + (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0)) + (fun a0:ad => pf (ad_double_plus_un a0)) m1)) + . + simpl in |- *. + rewrite + (H0 g (fun a0:ad => pf (ad_double_plus_un a0)) H1 + (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0))) + . + reflexivity. + Qed. + + Lemma MapFold_state_stateless : + forall g:ad -> A -> M, + (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) -> + forall (state:State) (m:Map A), + snd (MapFold_state state m) = MapFold g m. + Proof. + intros. exact (MapFold_state_stateless_1 m g (fun a0:ad => a0) H state). + Qed. + + End MapFoldDef. + + Lemma MapCollect_as_Fold : + forall (f:ad -> A -> Map B) (m:Map A), + MapCollect f m = MapFold (Map B) (M0 B) (MapMerge B) f m. + Proof. + simple induction m; trivial. + Qed. + + Definition alist := list (ad * A). + Definition anil := nil (A:=(ad * A)). + Definition acons := cons (A:=(ad * A)). + Definition aapp := app (A:=(ad * A)). + + Definition alist_of_Map := + MapFold alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil). + + Fixpoint alist_semantics (l:alist) : ad -> option A := + match l with + | nil => fun _:ad => NONE A + | (a, y) :: l' => + fun a0:ad => if ad_eq a a0 then SOME A y else alist_semantics l' a0 + end. + + Lemma alist_semantics_app : + forall (l l':alist) (a:ad), + alist_semantics (aapp l l') a = + match alist_semantics l a with + | NONE => alist_semantics l' a + | SOME y => SOME A y + end. + Proof. + unfold aapp in |- *. simple induction l. trivial. + intros. elim a. intros a1 y1. simpl in |- *. case (ad_eq a1 a0). reflexivity. + apply H. + Qed. + + Lemma alist_of_Map_semantics_1_1 : + forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A), + alist_semantics + (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) pf + m) a = SOME A y -> {a' : ad | a = pf a'}. + Proof. + simple induction m. simpl in |- *. intros. discriminate H. + simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (ad_eq (pf a) a0)). intro H. rewrite H. + intro H0. split with a. rewrite (ad_eq_complete _ _ H). reflexivity. + intro H. rewrite H. intro H0. discriminate H0. + intros. change + (alist_semantics + (aapp + (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) + (fun a0:ad => pf (ad_double a0)) m0) + (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) + (fun a0:ad => pf (ad_double_plus_un a0)) m1)) a = + SOME A y) in H1. + rewrite + (alist_semantics_app + (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil) + (fun a0:ad => pf (ad_double a0)) m0) + (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil) + (fun a0:ad => pf (ad_double_plus_un a0)) m1) a) + in H1. + elim + (option_sum A + (alist_semantics + (MapFold1 alist anil aapp + (fun (a0:ad) (y0:A) => acons (a0, y0) anil) + (fun a0:ad => pf (ad_double a0)) m0) a)). + intro H2. elim H2. intros y0 H3. elim (H (fun a0:ad => pf (ad_double a0)) a y0 H3). intros a0 H4. + split with (ad_double a0). assumption. + intro H2. rewrite H2 in H1. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1). + intros a0 H3. split with (ad_double_plus_un a0). assumption. + Qed. + + Definition ad_inj (pf:ad -> ad) := + forall a0 a1:ad, pf a0 = pf a1 -> a0 = a1. + + Lemma ad_comp_double_inj : + forall pf:ad -> ad, ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double a0)). + Proof. + unfold ad_inj in |- *. intros. apply ad_double_inj. exact (H _ _ H0). + Qed. + + Lemma ad_comp_double_plus_un_inj : + forall pf:ad -> ad, + ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double_plus_un a0)). + Proof. + unfold ad_inj in |- *. intros. apply ad_double_plus_un_inj. exact (H _ _ H0). + Qed. + + Lemma alist_of_Map_semantics_1 : + forall (m:Map A) (pf:ad -> ad), + ad_inj pf -> + forall a:ad, + MapGet A m a = + alist_semantics + (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) + pf m) (pf a). + Proof. + simple induction m. trivial. + simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0. + rewrite (ad_eq_complete _ _ H0). rewrite (ad_eq_correct (pf a1)). reflexivity. + intro H0. rewrite H0. elim (sumbool_of_bool (ad_eq (pf a) (pf a1))). intro H1. + rewrite (H a a1 (ad_eq_complete _ _ H1)) in H0. rewrite (ad_eq_correct a1) in H0. + discriminate H0. + intro H1. rewrite H1. reflexivity. + intros. change + (MapGet A (M2 A m0 m1) a = + alist_semantics + (aapp + (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) + (fun a0:ad => pf (ad_double a0)) m0) + (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) + (fun a0:ad => pf (ad_double_plus_un a0)) m1)) ( + pf a)) in |- *. + rewrite alist_semantics_app. rewrite (MapGet_M2_bit_0_if A m0 m1 a). + elim (ad_double_or_double_plus_un a). intro H2. elim H2. intros a0 H3. rewrite H3. + rewrite (ad_double_bit_0 a0). + rewrite <- + (H (fun a1:ad => pf (ad_double a1)) (ad_comp_double_inj pf H1) a0) + . + rewrite ad_double_div_2. case (MapGet A m0 a0). + elim + (option_sum A + (alist_semantics + (MapFold1 alist anil aapp + (fun (a1:ad) (y:A) => acons (a1, y) anil) + (fun a1:ad => pf (ad_double_plus_un a1)) m1) + (pf (ad_double a0)))). + intro H4. elim H4. intros y H5. + elim + (alist_of_Map_semantics_1_1 m1 (fun a1:ad => pf (ad_double_plus_un a1)) + (pf (ad_double a0)) y H5). + intros a1 H6. cut (ad_bit_0 (ad_double a0) = ad_bit_0 (ad_double_plus_un a1)). + intro. rewrite (ad_double_bit_0 a0) in H7. rewrite (ad_double_plus_un_bit_0 a1) in H7. + discriminate H7. + rewrite (H1 (ad_double a0) (ad_double_plus_un a1) H6). reflexivity. + intro H4. rewrite H4. reflexivity. + trivial. + intro H2. elim H2. intros a0 H3. rewrite H3. rewrite (ad_double_plus_un_bit_0 a0). + rewrite <- + (H0 (fun a1:ad => pf (ad_double_plus_un a1)) + (ad_comp_double_plus_un_inj pf H1) a0). + rewrite ad_double_plus_un_div_2. + elim + (option_sum A + (alist_semantics + (MapFold1 alist anil aapp + (fun (a1:ad) (y:A) => acons (a1, y) anil) + (fun a1:ad => pf (ad_double a1)) m0) + (pf (ad_double_plus_un a0)))). + intro H4. elim H4. intros y H5. + elim + (alist_of_Map_semantics_1_1 m0 (fun a1:ad => pf (ad_double a1)) + (pf (ad_double_plus_un a0)) y H5). + intros a1 H6. cut (ad_bit_0 (ad_double_plus_un a0) = ad_bit_0 (ad_double a1)). + intro H7. rewrite (ad_double_plus_un_bit_0 a0) in H7. rewrite (ad_double_bit_0 a1) in H7. + discriminate H7. + rewrite (H1 (ad_double_plus_un a0) (ad_double a1) H6). reflexivity. + intro H4. rewrite H4. reflexivity. + Qed. + + Lemma alist_of_Map_semantics : + forall m:Map A, eqm A (MapGet A m) (alist_semantics (alist_of_Map m)). + Proof. + unfold eqm in |- *. intros. exact + (alist_of_Map_semantics_1 m (fun a0:ad => a0) + (fun (a0 a1:ad) (p:a0 = a1) => p) a). + Qed. + + Fixpoint Map_of_alist (l:alist) : Map A := + match l with + | nil => M0 A + | (a, y) :: l' => MapPut A (Map_of_alist l') a y + end. + + Lemma Map_of_alist_semantics : + forall l:alist, eqm A (alist_semantics l) (MapGet A (Map_of_alist l)). + Proof. + unfold eqm in |- *. simple induction l. trivial. + intros r l0 H a. elim r. intros a0 y0. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 a)). + intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0). + rewrite (MapPut_semantics A (Map_of_alist l0) a y0 a). rewrite (ad_eq_correct a). + reflexivity. + intro H0. rewrite H0. rewrite (MapPut_semantics A (Map_of_alist l0) a0 y0 a). + rewrite H0. apply H. + Qed. + + Lemma Map_of_alist_of_Map : + forall m:Map A, eqmap A (Map_of_alist (alist_of_Map m)) m. + Proof. + unfold eqmap in |- *. intro. apply eqm_trans with (f' := alist_semantics (alist_of_Map m)). + apply eqm_sym. apply Map_of_alist_semantics. + apply eqm_sym. apply alist_of_Map_semantics. + Qed. + + Lemma alist_of_Map_of_alist : + forall l:alist, + eqm A (alist_semantics (alist_of_Map (Map_of_alist l))) + (alist_semantics l). + Proof. + intro. apply eqm_trans with (f' := MapGet A (Map_of_alist l)). + apply eqm_sym. apply alist_of_Map_semantics. + apply eqm_sym. apply Map_of_alist_semantics. + Qed. + + Lemma fold_right_aapp : + forall (M:Set) (neutral:M) (op:M -> M -> M), + (forall a b c:M, op (op a b) c = op a (op b c)) -> + (forall a:M, op neutral a = a) -> + forall (f:ad -> A -> M) (l l':alist), + fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) + neutral (aapp l l') = + op + (fold_right + (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral + l) + (fold_right + (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral + l'). + Proof. + simple induction l. simpl in |- *. intro. rewrite H0. reflexivity. + intros r l0 H1 l'. elim r. intros a y. simpl in |- *. rewrite H. rewrite (H1 l'). reflexivity. + Qed. + + Lemma MapFold_as_fold_1 : + forall (M:Set) (neutral:M) (op:M -> M -> M), + (forall a b c:M, op (op a b) c = op a (op b c)) -> + (forall a:M, op neutral a = a) -> + (forall a:M, op a neutral = a) -> + forall (f:ad -> A -> M) (m:Map A) (pf:ad -> ad), + MapFold1 M neutral op f pf m = + fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) + neutral + (MapFold1 alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil) pf + m). + Proof. + simple induction m. trivial. + intros. simpl in |- *. rewrite H1. reflexivity. + intros. simpl in |- *. rewrite (fold_right_aapp M neutral op H H0 f). + rewrite (H2 (fun a0:ad => pf (ad_double a0))). rewrite (H3 (fun a0:ad => pf (ad_double_plus_un a0))). + reflexivity. + Qed. + + Lemma MapFold_as_fold : + forall (M:Set) (neutral:M) (op:M -> M -> M), + (forall a b c:M, op (op a b) c = op a (op b c)) -> + (forall a:M, op neutral a = a) -> + (forall a:M, op a neutral = a) -> + forall (f:ad -> A -> M) (m:Map A), + MapFold M neutral op f m = + fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) + neutral (alist_of_Map m). + Proof. + intros. exact (MapFold_as_fold_1 M neutral op H H0 H1 f m (fun a0:ad => a0)). + Qed. + + Lemma alist_MapMerge_semantics : + forall m m':Map A, + eqm A (alist_semantics (aapp (alist_of_Map m') (alist_of_Map m))) + (alist_semantics (alist_of_Map (MapMerge A m m'))). + Proof. + unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a). + rewrite <- (alist_of_Map_semantics m' a). + rewrite <- (alist_of_Map_semantics (MapMerge A m m') a). + rewrite (MapMerge_semantics A m m' a). reflexivity. + Qed. + + Lemma alist_MapMerge_semantics_disjoint : + forall m m':Map A, + eqmap A (MapDomRestrTo A A m m') (M0 A) -> + eqm A (alist_semantics (aapp (alist_of_Map m) (alist_of_Map m'))) + (alist_semantics (alist_of_Map (MapMerge A m m'))). + Proof. + unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a). + rewrite <- (alist_of_Map_semantics m' a). + rewrite <- (alist_of_Map_semantics (MapMerge A m m') a). rewrite (MapMerge_semantics A m m' a). + elim (option_sum _ (MapGet A m a)). intro H0. elim H0. intros y H1. rewrite H1. + elim (option_sum _ (MapGet A m' a)). intro H2. elim H2. intros y' H3. + cut (MapGet A (MapDomRestrTo A A m m') a = NONE A). + rewrite (MapDomRestrTo_semantics A A m m' a). rewrite H3. rewrite H1. intro. discriminate H4. + exact (H a). + intro H2. rewrite H2. reflexivity. + intro H0. rewrite H0. case (MapGet A m' a); trivial. + Qed. + + Lemma alist_semantics_disjoint_comm : + forall l l':alist, + eqmap A (MapDomRestrTo A A (Map_of_alist l) (Map_of_alist l')) (M0 A) -> + eqm A (alist_semantics (aapp l l')) (alist_semantics (aapp l' l)). + Proof. + unfold eqm in |- *. intros. rewrite (alist_semantics_app l l' a). rewrite (alist_semantics_app l' l a). + rewrite <- (alist_of_Map_of_alist l a). rewrite <- (alist_of_Map_of_alist l' a). + rewrite <- + (alist_semantics_app (alist_of_Map (Map_of_alist l)) + (alist_of_Map (Map_of_alist l')) a). + rewrite <- + (alist_semantics_app (alist_of_Map (Map_of_alist l')) + (alist_of_Map (Map_of_alist l)) a). + rewrite (alist_MapMerge_semantics (Map_of_alist l) (Map_of_alist l') a). + rewrite + (alist_MapMerge_semantics_disjoint (Map_of_alist l) ( + Map_of_alist l') H a). + reflexivity. + Qed. + +End MapIter. |