diff options
Diffstat (limited to 'theories/IntMap/Mapcard.v')
-rw-r--r-- | theories/IntMap/Mapcard.v | 764 |
1 files changed, 0 insertions, 764 deletions
diff --git a/theories/IntMap/Mapcard.v b/theories/IntMap/Mapcard.v deleted file mode 100644 index 36be9bf9..00000000 --- a/theories/IntMap/Mapcard.v +++ /dev/null @@ -1,764 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(*i $Id: Mapcard.v 8733 2006-04-25 22:52:18Z letouzey $ i*) - -Require Import Bool. -Require Import Sumbool. -Require Import Arith. -Require Import NArith. -Require Import Ndigits. -Require Import Ndec. -Require Import Map. -Require Import Mapaxioms. -Require Import Mapiter. -Require Import Fset. -Require Import Mapsubset. -Require Import List. -Require Import Lsort. -Require Import Peano_dec. - -Section MapCard. - - Variables A B : Set. - - Lemma MapCard_M0 : MapCard A (M0 A) = 0. - Proof. - trivial. - Qed. - - Lemma MapCard_M1 : forall (a:ad) (y:A), MapCard A (M1 A a y) = 1. - Proof. - trivial. - Qed. - - Lemma MapCard_is_O : - forall m:Map A, MapCard A m = 0 -> forall a:ad, MapGet A m a = None. - Proof. - simple induction m. trivial. - intros a y H. discriminate H. - intros. simpl in H1. elim (plus_is_O _ _ H1). intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a). - case (Nbit0 a). apply H0. assumption. - apply H. assumption. - Qed. - - Lemma MapCard_is_not_O : - forall (m:Map A) (a:ad) (y:A), - MapGet A m a = Some y -> {n : nat | MapCard A m = S n}. - Proof. - simple induction m. intros. discriminate H. - intros a y a0 y0 H. simpl in H. elim (sumbool_of_bool (Neqb a a0)). intro H0. split with 0. - reflexivity. - intro H0. rewrite H0 in H. discriminate H. - intros. elim (sumbool_of_bool (Nbit0 a)). intro H2. - rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. elim (H0 (Ndiv2 a) y H1). intros n H3. - simpl in |- *. rewrite H3. split with (MapCard A m0 + n). - rewrite <- (plus_Snm_nSm (MapCard A m0) n). reflexivity. - intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. elim (H (Ndiv2 a) y H1). - intros n H3. simpl in |- *. rewrite H3. split with (n + MapCard A m1). reflexivity. - Qed. - - Lemma MapCard_is_one : - forall m:Map A, - MapCard A m = 1 -> {a : ad & {y : A | MapGet A m a = Some y}}. - Proof. - simple induction m. intro. discriminate H. - intros a y H. split with a. split with y. apply M1_semantics_1. - intros. simpl in H1. elim (plus_is_one (MapCard A m0) (MapCard A m1) H1). - intro H2. elim H2. intros. elim (H0 H4). intros a H5. split with (Ndouble_plus_one a). - rewrite (MapGet_M2_bit_0_1 A _ (Ndouble_plus_one_bit0 a) m0 m1). - rewrite Ndouble_plus_one_div2. exact H5. - intro H2. elim H2. intros. elim (H H3). intros a H5. split with (Ndouble a). - rewrite (MapGet_M2_bit_0_0 A _ (Ndouble_bit0 a) m0 m1). - rewrite Ndouble_div2. exact H5. - Qed. - - Lemma MapCard_is_one_unique : - forall m:Map A, - MapCard A m = 1 -> - forall (a a':ad) (y y':A), - MapGet A m a = Some y -> - MapGet A m a' = Some y' -> a = a' /\ y = y'. - Proof. - simple induction m. intro. discriminate H. - intros. elim (sumbool_of_bool (Neqb a a1)). intro H2. rewrite (Neqb_complete _ _ H2) in H0. - rewrite (M1_semantics_1 A a1 a0) in H0. inversion H0. elim (sumbool_of_bool (Neqb a a')). - intro H5. rewrite (Neqb_complete _ _ H5) in H1. rewrite (M1_semantics_1 A a' a0) in H1. - inversion H1. rewrite <- (Neqb_complete _ _ H2). rewrite <- (Neqb_complete _ _ H5). - rewrite <- H4. rewrite <- H6. split; reflexivity. - intro H5. rewrite (M1_semantics_2 A a a' a0 H5) in H1. discriminate H1. - intro H2. rewrite (M1_semantics_2 A a a1 a0 H2) in H0. discriminate H0. - intros. simpl in H1. elim (plus_is_one _ _ H1). intro H4. elim H4. intros. - rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. elim (sumbool_of_bool (Nbit0 a)). - intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3. - elim (sumbool_of_bool (Nbit0 a')). intro H8. rewrite H8 in H3. elim (H0 H6 _ _ _ _ H2 H3). - intros. split. rewrite <- (Ndiv2_double_plus_one a H7). - rewrite <- (Ndiv2_double_plus_one a' H8). rewrite H9. reflexivity. - assumption. - intro H8. rewrite H8 in H3. rewrite (MapCard_is_O m0 H5 (Ndiv2 a')) in H3. - discriminate H3. - intro H7. rewrite H7 in H2. rewrite (MapCard_is_O m0 H5 (Ndiv2 a)) in H2. - discriminate H2. - intro H4. elim H4. intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. - elim (sumbool_of_bool (Nbit0 a)). intro H7. rewrite H7 in H2. - rewrite (MapCard_is_O m1 H6 (Ndiv2 a)) in H2. discriminate H2. - intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3. - elim (sumbool_of_bool (Nbit0 a')). intro H8. rewrite H8 in H3. - rewrite (MapCard_is_O m1 H6 (Ndiv2 a')) in H3. discriminate H3. - intro H8. rewrite H8 in H3. elim (H H5 _ _ _ _ H2 H3). intros. split. - rewrite <- (Ndiv2_double a H7). rewrite <- (Ndiv2_double a' H8). - rewrite H9. reflexivity. - assumption. - Qed. - - Lemma length_as_fold : - forall (C:Set) (l:list C), - length l = fold_right (fun (_:C) (n:nat) => S n) 0 l. - Proof. - simple induction l. reflexivity. - intros. simpl in |- *. rewrite H. reflexivity. - Qed. - - Lemma length_as_fold_2 : - forall l:alist A, - length l = - fold_right (fun (r:ad * A) (n:nat) => let (a, y) := r in 1 + n) 0 l. - Proof. - simple induction l. reflexivity. - intros. simpl in |- *. rewrite H. elim a; reflexivity. - Qed. - - Lemma MapCard_as_Fold_1 : - forall (m:Map A) (pf:ad -> ad), - MapCard A m = MapFold1 A nat 0 plus (fun (_:ad) (_:A) => 1) pf m. - Proof. - simple induction m. trivial. - trivial. - intros. simpl in |- *. rewrite <- (H (fun a0:ad => pf (Ndouble a0))). - rewrite <- (H0 (fun a0:ad => pf (Ndouble_plus_one a0))). reflexivity. - Qed. - - Lemma MapCard_as_Fold : - forall m:Map A, - MapCard A m = MapFold A nat 0 plus (fun (_:ad) (_:A) => 1) m. - Proof. - intro. exact (MapCard_as_Fold_1 m (fun a0:ad => a0)). - Qed. - - Lemma MapCard_as_length : - forall m:Map A, MapCard A m = length (alist_of_Map A m). - Proof. - intro. rewrite MapCard_as_Fold. rewrite length_as_fold_2. - apply MapFold_as_fold with - (op := plus) (neutral := 0) (f := fun (_:ad) (_:A) => 1). exact plus_assoc_reverse. - trivial. - intro. rewrite <- plus_n_O. reflexivity. - Qed. - - Lemma MapCard_Put1_equals_2 : - forall (p:positive) (a a':ad) (y y':A), - MapCard A (MapPut1 A a y a' y' p) = 2. - Proof. - simple induction p. intros. simpl in |- *. case (Nbit0 a); reflexivity. - intros. simpl in |- *. case (Nbit0 a). exact (H (Ndiv2 a) (Ndiv2 a') y y'). - simpl in |- *. rewrite <- plus_n_O. exact (H (Ndiv2 a) (Ndiv2 a') y y'). - intros. simpl in |- *. case (Nbit0 a); reflexivity. - Qed. - - Lemma MapCard_Put_sum : - forall (m m':Map A) (a:ad) (y:A) (n n':nat), - m' = MapPut A m a y -> - n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}. - Proof. - simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. right. - rewrite H0. rewrite H1. reflexivity. - intros a y m' a0 y0 n n' H H0 H1. simpl in H. elim (Ndiscr (Nxor a a0)). intro H2. - elim H2. intros p H3. rewrite H3 in H. rewrite H in H1. - rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H1. simpl in H0. right. - rewrite H0. rewrite H1. reflexivity. - intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. simpl in H0. left. - rewrite H0. rewrite H1. reflexivity. - intros. simpl in H2. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. - elim (sumbool_of_bool (Nbit0 a)). intro H4. rewrite H4 in H1. - elim - (H0 (MapPut A m1 (Ndiv2 a) y) (Ndiv2 a) y ( - MapCard A m1) (MapCard A (MapPut A m1 (Ndiv2 a) y)) ( - refl_equal _) (refl_equal _) (refl_equal _)). - intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3. left. - assumption. - intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. - rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)) in H3. - simpl in H3. rewrite <- H2 in H3. right. assumption. - intro H4. rewrite H4 in H1. - elim - (H (MapPut A m0 (Ndiv2 a) y) (Ndiv2 a) y ( - MapCard A m0) (MapCard A (MapPut A m0 (Ndiv2 a) y)) ( - refl_equal _) (refl_equal _) (refl_equal _)). - intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3. - left. assumption. - intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. simpl in H3. rewrite <- H2 in H3. - right. assumption. - Qed. - - Lemma MapCard_Put_lb : - forall (m:Map A) (a:ad) (y:A), MapCard A (MapPut A m a y) >= MapCard A m. - Proof. - unfold ge in |- *. intros. - elim - (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) - (MapCard A (MapPut A m a y)) (refl_equal _) ( - refl_equal _) (refl_equal _)). - intro H. rewrite H. apply le_n. - intro H. rewrite H. apply le_n_Sn. - Qed. - - Lemma MapCard_Put_ub : - forall (m:Map A) (a:ad) (y:A), - MapCard A (MapPut A m a y) <= S (MapCard A m). - Proof. - intros. - elim - (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) - (MapCard A (MapPut A m a y)) (refl_equal _) ( - refl_equal _) (refl_equal _)). - intro H. rewrite H. apply le_n_Sn. - intro H. rewrite H. apply le_n. - Qed. - - Lemma MapCard_Put_1 : - forall (m:Map A) (a:ad) (y:A), - MapCard A (MapPut A m a y) = MapCard A m -> - {y : A | MapGet A m a = Some y}. - Proof. - simple induction m. intros. discriminate H. - intros a y a0 y0 H. simpl in H. elim (Ndiscr (Nxor a a0)). intro H0. elim H0. - intros p H1. rewrite H1 in H. rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H. - discriminate H. - intro H0. rewrite H0 in H. rewrite (Nxor_eq _ _ H0). split with y. apply M1_semantics_1. - intros. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. elim (sumbool_of_bool (Nbit0 a)). - intro H2. rewrite H2 in H1. simpl in H1. elim (H0 (Ndiv2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)). - intros y0 H3. split with y0. rewrite <- H3. exact (MapGet_M2_bit_0_1 A a H2 m0 m1). - intro H2. rewrite H2 in H1. simpl in H1. - rewrite - (plus_comm (MapCard A (MapPut A m0 (Ndiv2 a) y)) (MapCard A m1)) - in H1. - rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. - elim (H (Ndiv2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)). intros y0 H3. split with y0. - rewrite <- H3. exact (MapGet_M2_bit_0_0 A a H2 m0 m1). - Qed. - - Lemma MapCard_Put_2 : - forall (m:Map A) (a:ad) (y:A), - MapCard A (MapPut A m a y) = S (MapCard A m) -> MapGet A m a = None. - Proof. - simple induction m. trivial. - intros. simpl in H. elim (sumbool_of_bool (Neqb a a1)). intro H0. - rewrite (Neqb_complete _ _ H0) in H. rewrite (Nxor_nilpotent a1) in H. discriminate H. - intro H0. exact (M1_semantics_2 A a a1 a0 H0). - intros. elim (sumbool_of_bool (Nbit0 a)). intro H2. - rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply (H0 (Ndiv2 a) y). - apply (fun n m p:nat => plus_reg_l m p n) with (n := MapCard A m0). - rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)). simpl in H1. simpl in |- *. rewrite <- H1. - clear H1. - induction a. discriminate H2. - induction p. reflexivity. - discriminate H2. - reflexivity. - intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply (H (Ndiv2 a) y). - cut - (MapCard A (MapPut A m0 (Ndiv2 a) y) + MapCard A m1 = - S (MapCard A m0) + MapCard A m1). - intro. rewrite (plus_comm (MapCard A (MapPut A m0 (Ndiv2 a) y)) (MapCard A m1)) - in H3. - rewrite (plus_comm (S (MapCard A m0)) (MapCard A m1)) in H3. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H3). - simpl in |- *. simpl in H1. rewrite <- H1. induction a. trivial. - induction p. discriminate H2. - reflexivity. - discriminate H2. - Qed. - - Lemma MapCard_Put_1_conv : - forall (m:Map A) (a:ad) (y y':A), - MapGet A m a = Some y -> MapCard A (MapPut A m a y') = MapCard A m. - Proof. - intros. - elim - (MapCard_Put_sum m (MapPut A m a y') a y' (MapCard A m) - (MapCard A (MapPut A m a y')) (refl_equal _) ( - refl_equal _) (refl_equal _)). - trivial. - intro H0. rewrite (MapCard_Put_2 m a y' H0) in H. discriminate H. - Qed. - - Lemma MapCard_Put_2_conv : - forall (m:Map A) (a:ad) (y:A), - MapGet A m a = None -> MapCard A (MapPut A m a y) = S (MapCard A m). - Proof. - intros. - elim - (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) - (MapCard A (MapPut A m a y)) (refl_equal _) ( - refl_equal _) (refl_equal _)). - intro H0. elim (MapCard_Put_1 m a y H0). intros y' H1. rewrite H1 in H. discriminate H. - trivial. - Qed. - - Lemma MapCard_ext : - forall m m':Map A, - eqm A (MapGet A m) (MapGet A m') -> MapCard A m = MapCard A m'. - Proof. - unfold eqm in |- *. intros. rewrite (MapCard_as_length m). rewrite (MapCard_as_length m'). - rewrite (alist_canonical A (alist_of_Map A m) (alist_of_Map A m')). reflexivity. - unfold eqm in |- *. intro. rewrite (Map_of_alist_semantics A (alist_of_Map A m) a). - rewrite (Map_of_alist_semantics A (alist_of_Map A m') a). rewrite (Map_of_alist_of_Map A m' a). - rewrite (Map_of_alist_of_Map A m a). exact (H a). - apply alist_of_Map_sorts2. - apply alist_of_Map_sorts2. - Qed. - - Lemma MapCard_Dom : forall m:Map A, MapCard A m = MapCard unit (MapDom A m). - Proof. - simple induction m; trivial. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. - Qed. - - Lemma MapCard_Dom_Put_behind : - forall (m:Map A) (a:ad) (y:A), - MapDom A (MapPut_behind A m a y) = MapDom A (MapPut A m a y). - Proof. - simple induction m. trivial. - intros a y a0 y0. simpl in |- *. elim (Ndiscr (Nxor a a0)). intro H. elim H. - intros p H0. rewrite H0. reflexivity. - intro H. rewrite H. rewrite (Nxor_eq _ _ H). reflexivity. - intros. simpl in |- *. elim (Ndiscr a). intro H1. elim H1. intros p H2. rewrite H2. case p. - intro p0. simpl in |- *. rewrite H0. reflexivity. - intro p0. simpl in |- *. rewrite H. reflexivity. - simpl in |- *. rewrite H0. reflexivity. - intro H1. rewrite H1. simpl in |- *. rewrite H. reflexivity. - Qed. - - Lemma MapCard_Put_behind_Put : - forall (m:Map A) (a:ad) (y:A), - MapCard A (MapPut_behind A m a y) = MapCard A (MapPut A m a y). - Proof. - intros. rewrite MapCard_Dom. rewrite MapCard_Dom. rewrite MapCard_Dom_Put_behind. - reflexivity. - Qed. - - Lemma MapCard_Put_behind_sum : - forall (m m':Map A) (a:ad) (y:A) (n n':nat), - m' = MapPut_behind A m a y -> - n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}. - Proof. - intros. apply (MapCard_Put_sum m (MapPut A m a y) a y n n'); trivial. - rewrite <- MapCard_Put_behind_Put. rewrite <- H. assumption. - Qed. - - Lemma MapCard_makeM2 : - forall m m':Map A, MapCard A (makeM2 A m m') = MapCard A m + MapCard A m'. - Proof. - intros. rewrite (MapCard_ext _ _ (makeM2_M2 A m m')). reflexivity. - Qed. - - Lemma MapCard_Remove_sum : - forall (m m':Map A) (a:ad) (n n':nat), - m' = MapRemove A m a -> - n = MapCard A m -> n' = MapCard A m' -> {n = n'} + {n = S n'}. - Proof. - simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. left. rewrite H1. assumption. - simpl in |- *. intros. elim (sumbool_of_bool (Neqb a a1)). intro H2. rewrite H2 in H. - rewrite H in H1. simpl in H1. right. rewrite H1. assumption. - intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. left. rewrite H1. assumption. - intros. simpl in H1. simpl in H2. elim (sumbool_of_bool (Nbit0 a)). intro H4. - rewrite H4 in H1. rewrite H1 in H3. - rewrite (MapCard_makeM2 m0 (MapRemove A m1 (Ndiv2 a))) in H3. - elim - (H0 (MapRemove A m1 (Ndiv2 a)) (Ndiv2 a) ( - MapCard A m1) (MapCard A (MapRemove A m1 (Ndiv2 a))) - (refl_equal _) (refl_equal _) (refl_equal _)). - intro H5. rewrite H5 in H2. left. rewrite H3. exact H2. - intro H5. rewrite H5 in H2. - rewrite <- - (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (Ndiv2 a)))) - in H2. - right. rewrite H3. exact H2. - intro H4. rewrite H4 in H1. rewrite H1 in H3. - rewrite (MapCard_makeM2 (MapRemove A m0 (Ndiv2 a)) m1) in H3. - elim - (H (MapRemove A m0 (Ndiv2 a)) (Ndiv2 a) ( - MapCard A m0) (MapCard A (MapRemove A m0 (Ndiv2 a))) - (refl_equal _) (refl_equal _) (refl_equal _)). - intro H5. rewrite H5 in H2. left. rewrite H3. exact H2. - intro H5. rewrite H5 in H2. right. rewrite H3. exact H2. - Qed. - - Lemma MapCard_Remove_ub : - forall (m:Map A) (a:ad), MapCard A (MapRemove A m a) <= MapCard A m. - Proof. - intros. - elim - (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) - (MapCard A (MapRemove A m a)) (refl_equal _) ( - refl_equal _) (refl_equal _)). - intro H. rewrite H. apply le_n. - intro H. rewrite H. apply le_n_Sn. - Qed. - - Lemma MapCard_Remove_lb : - forall (m:Map A) (a:ad), S (MapCard A (MapRemove A m a)) >= MapCard A m. - Proof. - unfold ge in |- *. intros. - elim - (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) - (MapCard A (MapRemove A m a)) (refl_equal _) ( - refl_equal _) (refl_equal _)). - intro H. rewrite H. apply le_n_Sn. - intro H. rewrite H. apply le_n. - Qed. - - Lemma MapCard_Remove_1 : - forall (m:Map A) (a:ad), - MapCard A (MapRemove A m a) = MapCard A m -> MapGet A m a = None. - Proof. - simple induction m. trivial. - simpl in |- *. intros a y a0 H. elim (sumbool_of_bool (Neqb a a0)). intro H0. - rewrite H0 in H. discriminate H. - intro H0. rewrite H0. reflexivity. - intros. simpl in H1. elim (sumbool_of_bool (Nbit0 a)). intro H2. rewrite H2 in H1. - rewrite (MapCard_makeM2 m0 (MapRemove A m1 (Ndiv2 a))) in H1. - rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). - intro H2. rewrite H2 in H1. - rewrite (MapCard_makeM2 (MapRemove A m0 (Ndiv2 a)) m1) in H1. - rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H. - rewrite - (plus_comm (MapCard A (MapRemove A m0 (Ndiv2 a))) (MapCard A m1)) - in H1. - rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). - Qed. - - Lemma MapCard_Remove_2 : - forall (m:Map A) (a:ad), - S (MapCard A (MapRemove A m a)) = MapCard A m -> - {y : A | MapGet A m a = Some y}. - Proof. - simple induction m. intros. discriminate H. - intros a y a0 H. simpl in H. elim (sumbool_of_bool (Neqb a a0)). intro H0. - rewrite (Neqb_complete _ _ H0). split with y. exact (M1_semantics_1 A a0 y). - intro H0. rewrite H0 in H. discriminate H. - intros. simpl in H1. elim (sumbool_of_bool (Nbit0 a)). intro H2. rewrite H2 in H1. - rewrite (MapCard_makeM2 m0 (MapRemove A m1 (Ndiv2 a))) in H1. - rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0. - change - (S (MapCard A m0) + MapCard A (MapRemove A m1 (Ndiv2 a)) = - MapCard A m0 + MapCard A m1) in H1. - rewrite - (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (Ndiv2 a)))) - in H1. - exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). - intro H2. rewrite H2 in H1. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H. - rewrite (MapCard_makeM2 (MapRemove A m0 (Ndiv2 a)) m1) in H1. - change - (S (MapCard A (MapRemove A m0 (Ndiv2 a))) + MapCard A m1 = - MapCard A m0 + MapCard A m1) in H1. - rewrite - (plus_comm (S (MapCard A (MapRemove A m0 (Ndiv2 a)))) (MapCard A m1)) - in H1. - rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). - Qed. - - Lemma MapCard_Remove_1_conv : - forall (m:Map A) (a:ad), - MapGet A m a = None -> MapCard A (MapRemove A m a) = MapCard A m. - Proof. - intros. - elim - (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) - (MapCard A (MapRemove A m a)) (refl_equal _) ( - refl_equal _) (refl_equal _)). - intro H0. rewrite H0. reflexivity. - intro H0. elim (MapCard_Remove_2 m a (sym_eq H0)). intros y H1. rewrite H1 in H. - discriminate H. - Qed. - - Lemma MapCard_Remove_2_conv : - forall (m:Map A) (a:ad) (y:A), - MapGet A m a = Some y -> S (MapCard A (MapRemove A m a)) = MapCard A m. - Proof. - intros. - elim - (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) - (MapCard A (MapRemove A m a)) (refl_equal _) ( - refl_equal _) (refl_equal _)). - intro H0. rewrite (MapCard_Remove_1 m a (sym_eq H0)) in H. discriminate H. - intro H0. rewrite H0. reflexivity. - Qed. - - Lemma MapMerge_Restr_Card : - forall m m':Map A, - MapCard A m + MapCard A m' = - MapCard A (MapMerge A m m') + MapCard A (MapDomRestrTo A A m m'). - Proof. - simple induction m. simpl in |- *. intro. apply plus_n_O. - simpl in |- *. intros a y m'. elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y0 H0. - rewrite H0. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_1_conv m' a y0 y H0). - simpl in |- *. rewrite <- plus_Snm_nSm. apply plus_n_O. - intro H. rewrite H. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_2_conv m' a y H). - apply plus_n_O. - intros. - change - (MapCard A m0 + MapCard A m1 + MapCard A m' = - MapCard A (MapMerge A (M2 A m0 m1) m') + - MapCard A (MapDomRestrTo A A (M2 A m0 m1) m')) - in |- *. - elim m'. reflexivity. - intros a y. unfold MapMerge in |- *. unfold MapDomRestrTo in |- *. - elim (option_sum A (MapGet A (M2 A m0 m1) a)). intro H1. elim H1. intros y0 H2. rewrite H2. - rewrite (MapCard_Put_1_conv (M2 A m0 m1) a y0 y H2). reflexivity. - intro H1. rewrite H1. rewrite (MapCard_Put_2_conv (M2 A m0 m1) a y H1). simpl in |- *. - rewrite <- (plus_Snm_nSm (MapCard A m0 + MapCard A m1) 0). reflexivity. - intros. simpl in |- *. - rewrite - (plus_permute_2_in_4 (MapCard A m0) (MapCard A m1) ( - MapCard A m2) (MapCard A m3)). - rewrite (H m2). rewrite (H0 m3). - rewrite - (MapCard_makeM2 (MapDomRestrTo A A m0 m2) (MapDomRestrTo A A m1 m3)) - . - apply plus_permute_2_in_4. - Qed. - - Lemma MapMerge_disjoint_Card : - forall m m':Map A, - MapDisjoint A A m m' -> - MapCard A (MapMerge A m m') = MapCard A m + MapCard A m'. - Proof. - intros. rewrite (MapMerge_Restr_Card m m'). - rewrite (MapCard_ext _ _ (MapDisjoint_imp_2 _ _ _ _ H)). apply plus_n_O. - Qed. - - Lemma MapSplit_Card : - forall (m:Map A) (m':Map B), - MapCard A m = - MapCard A (MapDomRestrTo A B m m') + MapCard A (MapDomRestrBy A B m m'). - Proof. - intros. rewrite (MapCard_ext _ _ (MapDom_Split_1 A B m m')). apply MapMerge_disjoint_Card. - apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *. apply MapDom_Split_3. - Qed. - - Lemma MapMerge_Card_ub : - forall m m':Map A, - MapCard A (MapMerge A m m') <= MapCard A m + MapCard A m'. - Proof. - intros. rewrite MapMerge_Restr_Card. apply le_plus_l. - Qed. - - Lemma MapDomRestrTo_Card_ub_l : - forall (m:Map A) (m':Map B), - MapCard A (MapDomRestrTo A B m m') <= MapCard A m. - Proof. - intros. rewrite (MapSplit_Card m m'). apply le_plus_l. - Qed. - - Lemma MapDomRestrBy_Card_ub_l : - forall (m:Map A) (m':Map B), - MapCard A (MapDomRestrBy A B m m') <= MapCard A m. - Proof. - intros. rewrite (MapSplit_Card m m'). apply le_plus_r. - Qed. - - Lemma MapMerge_Card_disjoint : - forall m m':Map A, - MapCard A (MapMerge A m m') = MapCard A m + MapCard A m' -> - MapDisjoint A A m m'. - Proof. - simple induction m. intros. apply Map_M0_disjoint. - simpl in |- *. intros. rewrite (MapCard_Put_behind_Put m' a a0) in H. unfold MapDisjoint, in_dom in |- *. - simpl in |- *. intros. elim (sumbool_of_bool (Neqb a a1)). intro H2. - rewrite (Neqb_complete _ _ H2) in H. rewrite (MapCard_Put_2 m' a1 a0 H) in H1. - discriminate H1. - intro H2. rewrite H2 in H0. discriminate H0. - simple induction m'. intros. apply Map_disjoint_M0. - intros a y H1. rewrite <- (MapCard_ext _ _ (MapPut_as_Merge A (M2 A m0 m1) a y)) in H1. - unfold MapCard at 3 in H1. rewrite <- (plus_Snm_nSm (MapCard A (M2 A m0 m1)) 0) in H1. - rewrite <- (plus_n_O (S (MapCard A (M2 A m0 m1)))) in H1. unfold MapDisjoint, in_dom in |- *. - unfold MapGet at 2 in |- *. intros. elim (sumbool_of_bool (Neqb a a0)). intro H4. - rewrite <- (Neqb_complete _ _ H4) in H2. rewrite (MapCard_Put_2 _ _ _ H1) in H2. - discriminate H2. - intro H4. rewrite H4 in H3. discriminate H3. - intros. unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (Nbit0 a)). intro H6. - unfold MapDisjoint in H0. apply H0 with (m' := m3) (a := Ndiv2 a). apply le_antisym. - apply MapMerge_Card_ub. - apply (fun p n m:nat => plus_le_reg_l n m p) with - (p := MapCard A m0 + MapCard A m2). - rewrite - (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) ( - MapCard A m1) (MapCard A m3)). - change - (MapCard A (M2 A (MapMerge A m0 m2) (MapMerge A m1 m3)) = - MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3)) - in H3. - rewrite <- H3. simpl in |- *. apply plus_le_compat_r. apply MapMerge_Card_ub. - elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m0 m1) in H7. - unfold in_dom in |- *. rewrite H7. reflexivity. - elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m2 m3) in H7. - unfold in_dom in |- *. rewrite H7. reflexivity. - intro H6. unfold MapDisjoint in H. apply H with (m' := m2) (a := Ndiv2 a). apply le_antisym. - apply MapMerge_Card_ub. - apply (fun p n m:nat => plus_le_reg_l n m p) with - (p := MapCard A m1 + MapCard A m3). - rewrite - (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A m0 + MapCard A m2)) - . - rewrite - (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) ( - MapCard A m1) (MapCard A m3)). - rewrite - (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A (MapMerge A m0 m2))) - . - change - (MapCard A (MapMerge A m0 m2) + MapCard A (MapMerge A m1 m3) = - MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3)) - in H3. - rewrite <- H3. apply plus_le_compat_l. apply MapMerge_Card_ub. - elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m0 m1) in H7. - unfold in_dom in |- *. rewrite H7. reflexivity. - elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m2 m3) in H7. - unfold in_dom in |- *. rewrite H7. reflexivity. - Qed. - - Lemma MapCard_is_Sn : - forall (m:Map A) (n:nat), - MapCard _ m = S n -> {a : ad | in_dom _ a m = true}. - Proof. - simple induction m. intros. discriminate H. - intros a y n H. split with a. unfold in_dom in |- *. rewrite (M1_semantics_1 _ a y). reflexivity. - intros. simpl in H1. elim (O_or_S (MapCard _ m0)). intro H2. elim H2. intros m2 H3. - elim (H _ (sym_eq H3)). intros a H4. split with (Ndouble a). unfold in_dom in |- *. - rewrite (MapGet_M2_bit_0_0 A (Ndouble a) (Ndouble_bit0 a) m0 m1). - rewrite (Ndouble_div2 a). elim (in_dom_some _ _ _ H4). intros y H5. rewrite H5. reflexivity. - intro H2. rewrite <- H2 in H1. simpl in H1. elim (H0 _ H1). intros a H3. - split with (Ndouble_plus_one a). unfold in_dom in |- *. - rewrite - (MapGet_M2_bit_0_1 A (Ndouble_plus_one a) (Ndouble_plus_one_bit0 a) - m0 m1). - rewrite (Ndouble_plus_one_div2 a). elim (in_dom_some _ _ _ H3). intros y H4. rewrite H4. - reflexivity. - Qed. - -End MapCard. - -Section MapCard2. - - Variables A B : Set. - - Lemma MapSubset_card_eq_1 : - forall (n:nat) (m:Map A) (m':Map B), - MapSubset _ _ m m' -> - MapCard _ m = n -> MapCard _ m' = n -> MapSubset _ _ m' m. - Proof. - simple induction n. intros. unfold MapSubset, in_dom in |- *. intro. rewrite (MapCard_is_O _ m H0 a). - rewrite (MapCard_is_O _ m' H1 a). intro H2. discriminate H2. - intros. elim (MapCard_is_Sn A m n0 H1). intros a H3. elim (in_dom_some _ _ _ H3). - intros y H4. elim (in_dom_some _ _ _ (H0 _ H3)). intros y' H6. - cut (eqmap _ (MapPut _ (MapRemove _ m a) a y) m). intro. - cut (eqmap _ (MapPut _ (MapRemove _ m' a) a y') m'). intro. - apply MapSubset_ext with - (m0 := MapPut _ (MapRemove _ m' a) a y') - (m2 := MapPut _ (MapRemove _ m a) a y). - assumption. - assumption. - apply MapSubset_Put_mono. apply H. apply MapSubset_Remove_mono. assumption. - rewrite <- (MapCard_Remove_2_conv _ m a y H4) in H1. inversion_clear H1. reflexivity. - rewrite <- (MapCard_Remove_2_conv _ m' a y' H6) in H2. inversion_clear H2. reflexivity. - unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove B m' a) a y' a0). - elim (sumbool_of_bool (Neqb a a0)). intro H7. rewrite H7. rewrite <- (Neqb_complete _ _ H7). - apply sym_eq. assumption. - intro H7. rewrite H7. rewrite (MapRemove_semantics _ m' a a0). rewrite H7. reflexivity. - unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove A m a) a y a0). - elim (sumbool_of_bool (Neqb a a0)). intro H7. rewrite H7. rewrite <- (Neqb_complete _ _ H7). - apply sym_eq. assumption. - intro H7. rewrite H7. rewrite (MapRemove_semantics A m a a0). rewrite H7. reflexivity. - Qed. - - Lemma MapDomRestrTo_Card_ub_r : - forall (m:Map A) (m':Map B), - MapCard A (MapDomRestrTo A B m m') <= MapCard B m'. - Proof. - simple induction m. intro. simpl in |- *. apply le_O_n. - intros a y m'. simpl in |- *. elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y0 H0. - rewrite H0. elim (MapCard_is_not_O B m' a y0 H0). intros n H1. rewrite H1. simpl in |- *. - apply le_n_S. apply le_O_n. - intro H. rewrite H. simpl in |- *. apply le_O_n. - simple induction m'. simpl in |- *. apply le_O_n. - - intros a y. unfold MapDomRestrTo in |- *. case (MapGet A (M2 A m0 m1) a). simpl in |- *. - intro. simpl in |- *. apply le_n. - apply le_O_n. - intros. simpl in |- *. rewrite - (MapCard_makeM2 A (MapDomRestrTo A B m0 m2) (MapDomRestrTo A B m1 m3)) - . - apply plus_le_compat. apply H. - apply H0. - Qed. - -End MapCard2. - -Section MapCard3. - - Variables A B : Set. - - Lemma MapMerge_Card_lb_l : - forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m. - Proof. - unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m')). - rewrite (plus_comm (MapCard A m') (MapCard A m)). - rewrite (plus_comm (MapCard A m') (MapCard A (MapMerge A m m'))). - rewrite (MapMerge_Restr_Card A m m'). apply plus_le_compat_l. apply MapDomRestrTo_Card_ub_r. - Qed. - - Lemma MapMerge_Card_lb_r : - forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m'. - Proof. - unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m)). rewrite (MapMerge_Restr_Card A m m'). - rewrite - (plus_comm (MapCard A (MapMerge A m m')) - (MapCard A (MapDomRestrTo A A m m'))). - apply plus_le_compat_r. apply MapDomRestrTo_Card_ub_l. - Qed. - - Lemma MapDomRestrBy_Card_lb : - forall (m:Map A) (m':Map B), - MapCard B m' + MapCard A (MapDomRestrBy A B m m') >= MapCard A m. - Proof. - unfold ge in |- *. intros. rewrite (MapSplit_Card A B m m'). apply plus_le_compat_r. - apply MapDomRestrTo_Card_ub_r. - Qed. - - Lemma MapSubset_Card_le : - forall (m:Map A) (m':Map B), - MapSubset A B m m' -> MapCard A m <= MapCard B m'. - Proof. - intros. apply le_trans with (m := MapCard B m' + MapCard A (MapDomRestrBy A B m m')). - exact (MapDomRestrBy_Card_lb m m'). - rewrite (MapCard_ext _ _ _ (MapSubset_imp_2 _ _ _ _ H)). simpl in |- *. rewrite <- plus_n_O. - apply le_n. - Qed. - - Lemma MapSubset_card_eq : - forall (m:Map A) (m':Map B), - MapSubset _ _ m m' -> - MapCard _ m' <= MapCard _ m -> eqmap _ (MapDom _ m) (MapDom _ m'). - Proof. - intros. apply MapSubset_antisym. assumption. - cut (MapCard B m' = MapCard A m). intro. apply (MapSubset_card_eq_1 A B (MapCard A m)). - assumption. - reflexivity. - assumption. - apply le_antisym. assumption. - apply MapSubset_Card_le. assumption. - Qed. - -End MapCard3.
\ No newline at end of file |