diff options
Diffstat (limited to 'theories/IntMap/Mapcard.v')
-rw-r--r-- | theories/IntMap/Mapcard.v | 764 |
1 files changed, 764 insertions, 0 deletions
diff --git a/theories/IntMap/Mapcard.v b/theories/IntMap/Mapcard.v new file mode 100644 index 00000000..49f9fe91 --- /dev/null +++ b/theories/IntMap/Mapcard.v @@ -0,0 +1,764 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(*i $Id: Mapcard.v,v 1.5.2.1 2004/07/16 19:31:04 herbelin Exp $ i*) + +Require Import Bool. +Require Import Sumbool. +Require Import Arith. +Require Import ZArith. +Require Import Addr. +Require Import Adist. +Require Import Addec. +Require Import Map. +Require Import Mapaxioms. +Require Import Mapiter. +Require Import Fset. +Require Import Mapsubset. +Require Import List. +Require Import Lsort. +Require Import Peano_dec. + +Section MapCard. + + Variables A B : Set. + + Lemma MapCard_M0 : MapCard A (M0 A) = 0. + Proof. + trivial. + Qed. + + Lemma MapCard_M1 : forall (a:ad) (y:A), MapCard A (M1 A a y) = 1. + Proof. + trivial. + Qed. + + Lemma MapCard_is_O : + forall m:Map A, MapCard A m = 0 -> forall a:ad, MapGet A m a = NONE A. + Proof. + simple induction m. trivial. + intros a y H. discriminate H. + intros. simpl in H1. elim (plus_is_O _ _ H1). intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a). + case (ad_bit_0 a). apply H0. assumption. + apply H. assumption. + Qed. + + Lemma MapCard_is_not_O : + forall (m:Map A) (a:ad) (y:A), + MapGet A m a = SOME A y -> {n : nat | MapCard A m = S n}. + Proof. + simple induction m. intros. discriminate H. + intros a y a0 y0 H. simpl in H. elim (sumbool_of_bool (ad_eq a a0)). intro H0. split with 0. + reflexivity. + intro H0. rewrite H0 in H. discriminate H. + intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. + rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. elim (H0 (ad_div_2 a) y H1). intros n H3. + simpl in |- *. rewrite H3. split with (MapCard A m0 + n). + rewrite <- (plus_Snm_nSm (MapCard A m0) n). reflexivity. + intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. elim (H (ad_div_2 a) y H1). + intros n H3. simpl in |- *. rewrite H3. split with (n + MapCard A m1). reflexivity. + Qed. + + Lemma MapCard_is_one : + forall m:Map A, + MapCard A m = 1 -> {a : ad & {y : A | MapGet A m a = SOME A y}}. + Proof. + simple induction m. intro. discriminate H. + intros a y H. split with a. split with y. apply M1_semantics_1. + intros. simpl in H1. elim (plus_is_one (MapCard A m0) (MapCard A m1) H1). + intro H2. elim H2. intros. elim (H0 H4). intros a H5. split with (ad_double_plus_un a). + rewrite (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m0 m1). + rewrite ad_double_plus_un_div_2. exact H5. + intro H2. elim H2. intros. elim (H H3). intros a H5. split with (ad_double a). + rewrite (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m0 m1). + rewrite ad_double_div_2. exact H5. + Qed. + + Lemma MapCard_is_one_unique : + forall m:Map A, + MapCard A m = 1 -> + forall (a a':ad) (y y':A), + MapGet A m a = SOME A y -> + MapGet A m a' = SOME A y' -> a = a' /\ y = y'. + Proof. + simple induction m. intro. discriminate H. + intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. rewrite (ad_eq_complete _ _ H2) in H0. + rewrite (M1_semantics_1 A a1 a0) in H0. inversion H0. elim (sumbool_of_bool (ad_eq a a')). + intro H5. rewrite (ad_eq_complete _ _ H5) in H1. rewrite (M1_semantics_1 A a' a0) in H1. + inversion H1. rewrite <- (ad_eq_complete _ _ H2). rewrite <- (ad_eq_complete _ _ H5). + rewrite <- H4. rewrite <- H6. split; reflexivity. + intro H5. rewrite (M1_semantics_2 A a a' a0 H5) in H1. discriminate H1. + intro H2. rewrite (M1_semantics_2 A a a1 a0 H2) in H0. discriminate H0. + intros. simpl in H1. elim (plus_is_one _ _ H1). intro H4. elim H4. intros. + rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. elim (sumbool_of_bool (ad_bit_0 a)). + intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3. + elim (sumbool_of_bool (ad_bit_0 a')). intro H8. rewrite H8 in H3. elim (H0 H6 _ _ _ _ H2 H3). + intros. split. rewrite <- (ad_div_2_double_plus_un a H7). + rewrite <- (ad_div_2_double_plus_un a' H8). rewrite H9. reflexivity. + assumption. + intro H8. rewrite H8 in H3. rewrite (MapCard_is_O m0 H5 (ad_div_2 a')) in H3. + discriminate H3. + intro H7. rewrite H7 in H2. rewrite (MapCard_is_O m0 H5 (ad_div_2 a)) in H2. + discriminate H2. + intro H4. elim H4. intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. + elim (sumbool_of_bool (ad_bit_0 a)). intro H7. rewrite H7 in H2. + rewrite (MapCard_is_O m1 H6 (ad_div_2 a)) in H2. discriminate H2. + intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3. + elim (sumbool_of_bool (ad_bit_0 a')). intro H8. rewrite H8 in H3. + rewrite (MapCard_is_O m1 H6 (ad_div_2 a')) in H3. discriminate H3. + intro H8. rewrite H8 in H3. elim (H H5 _ _ _ _ H2 H3). intros. split. + rewrite <- (ad_div_2_double a H7). rewrite <- (ad_div_2_double a' H8). + rewrite H9. reflexivity. + assumption. + Qed. + + Lemma length_as_fold : + forall (C:Set) (l:list C), + length l = fold_right (fun (_:C) (n:nat) => S n) 0 l. + Proof. + simple induction l. reflexivity. + intros. simpl in |- *. rewrite H. reflexivity. + Qed. + + Lemma length_as_fold_2 : + forall l:alist A, + length l = + fold_right (fun (r:ad * A) (n:nat) => let (a, y) := r in 1 + n) 0 l. + Proof. + simple induction l. reflexivity. + intros. simpl in |- *. rewrite H. elim a; reflexivity. + Qed. + + Lemma MapCard_as_Fold_1 : + forall (m:Map A) (pf:ad -> ad), + MapCard A m = MapFold1 A nat 0 plus (fun (_:ad) (_:A) => 1) pf m. + Proof. + simple induction m. trivial. + trivial. + intros. simpl in |- *. rewrite <- (H (fun a0:ad => pf (ad_double a0))). + rewrite <- (H0 (fun a0:ad => pf (ad_double_plus_un a0))). reflexivity. + Qed. + + Lemma MapCard_as_Fold : + forall m:Map A, + MapCard A m = MapFold A nat 0 plus (fun (_:ad) (_:A) => 1) m. + Proof. + intro. exact (MapCard_as_Fold_1 m (fun a0:ad => a0)). + Qed. + + Lemma MapCard_as_length : + forall m:Map A, MapCard A m = length (alist_of_Map A m). + Proof. + intro. rewrite MapCard_as_Fold. rewrite length_as_fold_2. + apply MapFold_as_fold with + (op := plus) (neutral := 0) (f := fun (_:ad) (_:A) => 1). exact plus_assoc_reverse. + trivial. + intro. rewrite <- plus_n_O. reflexivity. + Qed. + + Lemma MapCard_Put1_equals_2 : + forall (p:positive) (a a':ad) (y y':A), + MapCard A (MapPut1 A a y a' y' p) = 2. + Proof. + simple induction p. intros. simpl in |- *. case (ad_bit_0 a); reflexivity. + intros. simpl in |- *. case (ad_bit_0 a). exact (H (ad_div_2 a) (ad_div_2 a') y y'). + simpl in |- *. rewrite <- plus_n_O. exact (H (ad_div_2 a) (ad_div_2 a') y y'). + intros. simpl in |- *. case (ad_bit_0 a); reflexivity. + Qed. + + Lemma MapCard_Put_sum : + forall (m m':Map A) (a:ad) (y:A) (n n':nat), + m' = MapPut A m a y -> + n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}. + Proof. + simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. right. + rewrite H0. rewrite H1. reflexivity. + intros a y m' a0 y0 n n' H H0 H1. simpl in H. elim (ad_sum (ad_xor a a0)). intro H2. + elim H2. intros p H3. rewrite H3 in H. rewrite H in H1. + rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H1. simpl in H0. right. + rewrite H0. rewrite H1. reflexivity. + intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. simpl in H0. left. + rewrite H0. rewrite H1. reflexivity. + intros. simpl in H2. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. + elim (sumbool_of_bool (ad_bit_0 a)). intro H4. rewrite H4 in H1. + elim + (H0 (MapPut A m1 (ad_div_2 a) y) (ad_div_2 a) y ( + MapCard A m1) (MapCard A (MapPut A m1 (ad_div_2 a) y)) ( + refl_equal _) (refl_equal _) (refl_equal _)). + intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3. left. + assumption. + intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. + rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)) in H3. + simpl in H3. rewrite <- H2 in H3. right. assumption. + intro H4. rewrite H4 in H1. + elim + (H (MapPut A m0 (ad_div_2 a) y) (ad_div_2 a) y ( + MapCard A m0) (MapCard A (MapPut A m0 (ad_div_2 a) y)) ( + refl_equal _) (refl_equal _) (refl_equal _)). + intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3. + left. assumption. + intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. simpl in H3. rewrite <- H2 in H3. + right. assumption. + Qed. + + Lemma MapCard_Put_lb : + forall (m:Map A) (a:ad) (y:A), MapCard A (MapPut A m a y) >= MapCard A m. + Proof. + unfold ge in |- *. intros. + elim + (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) + (MapCard A (MapPut A m a y)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H. rewrite H. apply le_n. + intro H. rewrite H. apply le_n_Sn. + Qed. + + Lemma MapCard_Put_ub : + forall (m:Map A) (a:ad) (y:A), + MapCard A (MapPut A m a y) <= S (MapCard A m). + Proof. + intros. + elim + (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) + (MapCard A (MapPut A m a y)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H. rewrite H. apply le_n_Sn. + intro H. rewrite H. apply le_n. + Qed. + + Lemma MapCard_Put_1 : + forall (m:Map A) (a:ad) (y:A), + MapCard A (MapPut A m a y) = MapCard A m -> + {y : A | MapGet A m a = SOME A y}. + Proof. + simple induction m. intros. discriminate H. + intros a y a0 y0 H. simpl in H. elim (ad_sum (ad_xor a a0)). intro H0. elim H0. + intros p H1. rewrite H1 in H. rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H. + discriminate H. + intro H0. rewrite H0 in H. rewrite (ad_xor_eq _ _ H0). split with y. apply M1_semantics_1. + intros. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. elim (sumbool_of_bool (ad_bit_0 a)). + intro H2. rewrite H2 in H1. simpl in H1. elim (H0 (ad_div_2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)). + intros y0 H3. split with y0. rewrite <- H3. exact (MapGet_M2_bit_0_1 A a H2 m0 m1). + intro H2. rewrite H2 in H1. simpl in H1. + rewrite + (plus_comm (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1)) + in H1. + rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. + elim (H (ad_div_2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)). intros y0 H3. split with y0. + rewrite <- H3. exact (MapGet_M2_bit_0_0 A a H2 m0 m1). + Qed. + + Lemma MapCard_Put_2 : + forall (m:Map A) (a:ad) (y:A), + MapCard A (MapPut A m a y) = S (MapCard A m) -> MapGet A m a = NONE A. + Proof. + simple induction m. trivial. + intros. simpl in H. elim (sumbool_of_bool (ad_eq a a1)). intro H0. + rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_xor_nilpotent a1) in H. discriminate H. + intro H0. exact (M1_semantics_2 A a a1 a0 H0). + intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. + rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply (H0 (ad_div_2 a) y). + apply (fun n m p:nat => plus_reg_l m p n) with (n := MapCard A m0). + rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)). simpl in H1. simpl in |- *. rewrite <- H1. + clear H1. + induction a. discriminate H2. + induction p. reflexivity. + discriminate H2. + reflexivity. + intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply (H (ad_div_2 a) y). + cut + (MapCard A (MapPut A m0 (ad_div_2 a) y) + MapCard A m1 = + S (MapCard A m0) + MapCard A m1). + intro. rewrite (plus_comm (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1)) + in H3. + rewrite (plus_comm (S (MapCard A m0)) (MapCard A m1)) in H3. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H3). + simpl in |- *. simpl in H1. rewrite <- H1. induction a. trivial. + induction p. discriminate H2. + reflexivity. + discriminate H2. + Qed. + + Lemma MapCard_Put_1_conv : + forall (m:Map A) (a:ad) (y y':A), + MapGet A m a = SOME A y -> MapCard A (MapPut A m a y') = MapCard A m. + Proof. + intros. + elim + (MapCard_Put_sum m (MapPut A m a y') a y' (MapCard A m) + (MapCard A (MapPut A m a y')) (refl_equal _) ( + refl_equal _) (refl_equal _)). + trivial. + intro H0. rewrite (MapCard_Put_2 m a y' H0) in H. discriminate H. + Qed. + + Lemma MapCard_Put_2_conv : + forall (m:Map A) (a:ad) (y:A), + MapGet A m a = NONE A -> MapCard A (MapPut A m a y) = S (MapCard A m). + Proof. + intros. + elim + (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) + (MapCard A (MapPut A m a y)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H0. elim (MapCard_Put_1 m a y H0). intros y' H1. rewrite H1 in H. discriminate H. + trivial. + Qed. + + Lemma MapCard_ext : + forall m m':Map A, + eqm A (MapGet A m) (MapGet A m') -> MapCard A m = MapCard A m'. + Proof. + unfold eqm in |- *. intros. rewrite (MapCard_as_length m). rewrite (MapCard_as_length m'). + rewrite (alist_canonical A (alist_of_Map A m) (alist_of_Map A m')). reflexivity. + unfold eqm in |- *. intro. rewrite (Map_of_alist_semantics A (alist_of_Map A m) a). + rewrite (Map_of_alist_semantics A (alist_of_Map A m') a). rewrite (Map_of_alist_of_Map A m' a). + rewrite (Map_of_alist_of_Map A m a). exact (H a). + apply alist_of_Map_sorts2. + apply alist_of_Map_sorts2. + Qed. + + Lemma MapCard_Dom : forall m:Map A, MapCard A m = MapCard unit (MapDom A m). + Proof. + simple induction m; trivial. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. + Qed. + + Lemma MapCard_Dom_Put_behind : + forall (m:Map A) (a:ad) (y:A), + MapDom A (MapPut_behind A m a y) = MapDom A (MapPut A m a y). + Proof. + simple induction m. trivial. + intros a y a0 y0. simpl in |- *. elim (ad_sum (ad_xor a a0)). intro H. elim H. + intros p H0. rewrite H0. reflexivity. + intro H. rewrite H. rewrite (ad_xor_eq _ _ H). reflexivity. + intros. simpl in |- *. elim (ad_sum a). intro H1. elim H1. intros p H2. rewrite H2. case p. + intro p0. simpl in |- *. rewrite H0. reflexivity. + intro p0. simpl in |- *. rewrite H. reflexivity. + simpl in |- *. rewrite H0. reflexivity. + intro H1. rewrite H1. simpl in |- *. rewrite H. reflexivity. + Qed. + + Lemma MapCard_Put_behind_Put : + forall (m:Map A) (a:ad) (y:A), + MapCard A (MapPut_behind A m a y) = MapCard A (MapPut A m a y). + Proof. + intros. rewrite MapCard_Dom. rewrite MapCard_Dom. rewrite MapCard_Dom_Put_behind. + reflexivity. + Qed. + + Lemma MapCard_Put_behind_sum : + forall (m m':Map A) (a:ad) (y:A) (n n':nat), + m' = MapPut_behind A m a y -> + n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}. + Proof. + intros. apply (MapCard_Put_sum m (MapPut A m a y) a y n n'); trivial. + rewrite <- MapCard_Put_behind_Put. rewrite <- H. assumption. + Qed. + + Lemma MapCard_makeM2 : + forall m m':Map A, MapCard A (makeM2 A m m') = MapCard A m + MapCard A m'. + Proof. + intros. rewrite (MapCard_ext _ _ (makeM2_M2 A m m')). reflexivity. + Qed. + + Lemma MapCard_Remove_sum : + forall (m m':Map A) (a:ad) (n n':nat), + m' = MapRemove A m a -> + n = MapCard A m -> n' = MapCard A m' -> {n = n'} + {n = S n'}. + Proof. + simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. left. rewrite H1. assumption. + simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. rewrite H2 in H. + rewrite H in H1. simpl in H1. right. rewrite H1. assumption. + intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. left. rewrite H1. assumption. + intros. simpl in H1. simpl in H2. elim (sumbool_of_bool (ad_bit_0 a)). intro H4. + rewrite H4 in H1. rewrite H1 in H3. + rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H3. + elim + (H0 (MapRemove A m1 (ad_div_2 a)) (ad_div_2 a) ( + MapCard A m1) (MapCard A (MapRemove A m1 (ad_div_2 a))) + (refl_equal _) (refl_equal _) (refl_equal _)). + intro H5. rewrite H5 in H2. left. rewrite H3. exact H2. + intro H5. rewrite H5 in H2. + rewrite <- + (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a)))) + in H2. + right. rewrite H3. exact H2. + intro H4. rewrite H4 in H1. rewrite H1 in H3. + rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H3. + elim + (H (MapRemove A m0 (ad_div_2 a)) (ad_div_2 a) ( + MapCard A m0) (MapCard A (MapRemove A m0 (ad_div_2 a))) + (refl_equal _) (refl_equal _) (refl_equal _)). + intro H5. rewrite H5 in H2. left. rewrite H3. exact H2. + intro H5. rewrite H5 in H2. right. rewrite H3. exact H2. + Qed. + + Lemma MapCard_Remove_ub : + forall (m:Map A) (a:ad), MapCard A (MapRemove A m a) <= MapCard A m. + Proof. + intros. + elim + (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) + (MapCard A (MapRemove A m a)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H. rewrite H. apply le_n. + intro H. rewrite H. apply le_n_Sn. + Qed. + + Lemma MapCard_Remove_lb : + forall (m:Map A) (a:ad), S (MapCard A (MapRemove A m a)) >= MapCard A m. + Proof. + unfold ge in |- *. intros. + elim + (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) + (MapCard A (MapRemove A m a)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H. rewrite H. apply le_n_Sn. + intro H. rewrite H. apply le_n. + Qed. + + Lemma MapCard_Remove_1 : + forall (m:Map A) (a:ad), + MapCard A (MapRemove A m a) = MapCard A m -> MapGet A m a = NONE A. + Proof. + simple induction m. trivial. + simpl in |- *. intros a y a0 H. elim (sumbool_of_bool (ad_eq a a0)). intro H0. + rewrite H0 in H. discriminate H. + intro H0. rewrite H0. reflexivity. + intros. simpl in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2 in H1. + rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1. + rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). + intro H2. rewrite H2 in H1. + rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1. + rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H. + rewrite + (plus_comm (MapCard A (MapRemove A m0 (ad_div_2 a))) (MapCard A m1)) + in H1. + rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). + Qed. + + Lemma MapCard_Remove_2 : + forall (m:Map A) (a:ad), + S (MapCard A (MapRemove A m a)) = MapCard A m -> + {y : A | MapGet A m a = SOME A y}. + Proof. + simple induction m. intros. discriminate H. + intros a y a0 H. simpl in H. elim (sumbool_of_bool (ad_eq a a0)). intro H0. + rewrite (ad_eq_complete _ _ H0). split with y. exact (M1_semantics_1 A a0 y). + intro H0. rewrite H0 in H. discriminate H. + intros. simpl in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2 in H1. + rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1. + rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0. + change + (S (MapCard A m0) + MapCard A (MapRemove A m1 (ad_div_2 a)) = + MapCard A m0 + MapCard A m1) in H1. + rewrite + (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a)))) + in H1. + exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). + intro H2. rewrite H2 in H1. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H. + rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1. + change + (S (MapCard A (MapRemove A m0 (ad_div_2 a))) + MapCard A m1 = + MapCard A m0 + MapCard A m1) in H1. + rewrite + (plus_comm (S (MapCard A (MapRemove A m0 (ad_div_2 a)))) (MapCard A m1)) + in H1. + rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). + Qed. + + Lemma MapCard_Remove_1_conv : + forall (m:Map A) (a:ad), + MapGet A m a = NONE A -> MapCard A (MapRemove A m a) = MapCard A m. + Proof. + intros. + elim + (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) + (MapCard A (MapRemove A m a)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H0. rewrite H0. reflexivity. + intro H0. elim (MapCard_Remove_2 m a (sym_eq H0)). intros y H1. rewrite H1 in H. + discriminate H. + Qed. + + Lemma MapCard_Remove_2_conv : + forall (m:Map A) (a:ad) (y:A), + MapGet A m a = SOME A y -> S (MapCard A (MapRemove A m a)) = MapCard A m. + Proof. + intros. + elim + (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) + (MapCard A (MapRemove A m a)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H0. rewrite (MapCard_Remove_1 m a (sym_eq H0)) in H. discriminate H. + intro H0. rewrite H0. reflexivity. + Qed. + + Lemma MapMerge_Restr_Card : + forall m m':Map A, + MapCard A m + MapCard A m' = + MapCard A (MapMerge A m m') + MapCard A (MapDomRestrTo A A m m'). + Proof. + simple induction m. simpl in |- *. intro. apply plus_n_O. + simpl in |- *. intros a y m'. elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y0 H0. + rewrite H0. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_1_conv m' a y0 y H0). + simpl in |- *. rewrite <- plus_Snm_nSm. apply plus_n_O. + intro H. rewrite H. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_2_conv m' a y H). + apply plus_n_O. + intros. + change + (MapCard A m0 + MapCard A m1 + MapCard A m' = + MapCard A (MapMerge A (M2 A m0 m1) m') + + MapCard A (MapDomRestrTo A A (M2 A m0 m1) m')) + in |- *. + elim m'. reflexivity. + intros a y. unfold MapMerge in |- *. unfold MapDomRestrTo in |- *. + elim (option_sum A (MapGet A (M2 A m0 m1) a)). intro H1. elim H1. intros y0 H2. rewrite H2. + rewrite (MapCard_Put_1_conv (M2 A m0 m1) a y0 y H2). reflexivity. + intro H1. rewrite H1. rewrite (MapCard_Put_2_conv (M2 A m0 m1) a y H1). simpl in |- *. + rewrite <- (plus_Snm_nSm (MapCard A m0 + MapCard A m1) 0). reflexivity. + intros. simpl in |- *. + rewrite + (plus_permute_2_in_4 (MapCard A m0) (MapCard A m1) ( + MapCard A m2) (MapCard A m3)). + rewrite (H m2). rewrite (H0 m3). + rewrite + (MapCard_makeM2 (MapDomRestrTo A A m0 m2) (MapDomRestrTo A A m1 m3)) + . + apply plus_permute_2_in_4. + Qed. + + Lemma MapMerge_disjoint_Card : + forall m m':Map A, + MapDisjoint A A m m' -> + MapCard A (MapMerge A m m') = MapCard A m + MapCard A m'. + Proof. + intros. rewrite (MapMerge_Restr_Card m m'). + rewrite (MapCard_ext _ _ (MapDisjoint_imp_2 _ _ _ _ H)). apply plus_n_O. + Qed. + + Lemma MapSplit_Card : + forall (m:Map A) (m':Map B), + MapCard A m = + MapCard A (MapDomRestrTo A B m m') + MapCard A (MapDomRestrBy A B m m'). + Proof. + intros. rewrite (MapCard_ext _ _ (MapDom_Split_1 A B m m')). apply MapMerge_disjoint_Card. + apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *. apply MapDom_Split_3. + Qed. + + Lemma MapMerge_Card_ub : + forall m m':Map A, + MapCard A (MapMerge A m m') <= MapCard A m + MapCard A m'. + Proof. + intros. rewrite MapMerge_Restr_Card. apply le_plus_l. + Qed. + + Lemma MapDomRestrTo_Card_ub_l : + forall (m:Map A) (m':Map B), + MapCard A (MapDomRestrTo A B m m') <= MapCard A m. + Proof. + intros. rewrite (MapSplit_Card m m'). apply le_plus_l. + Qed. + + Lemma MapDomRestrBy_Card_ub_l : + forall (m:Map A) (m':Map B), + MapCard A (MapDomRestrBy A B m m') <= MapCard A m. + Proof. + intros. rewrite (MapSplit_Card m m'). apply le_plus_r. + Qed. + + Lemma MapMerge_Card_disjoint : + forall m m':Map A, + MapCard A (MapMerge A m m') = MapCard A m + MapCard A m' -> + MapDisjoint A A m m'. + Proof. + simple induction m. intros. apply Map_M0_disjoint. + simpl in |- *. intros. rewrite (MapCard_Put_behind_Put m' a a0) in H. unfold MapDisjoint, in_dom in |- *. + simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. + rewrite (ad_eq_complete _ _ H2) in H. rewrite (MapCard_Put_2 m' a1 a0 H) in H1. + discriminate H1. + intro H2. rewrite H2 in H0. discriminate H0. + simple induction m'. intros. apply Map_disjoint_M0. + intros a y H1. rewrite <- (MapCard_ext _ _ (MapPut_as_Merge A (M2 A m0 m1) a y)) in H1. + unfold MapCard at 3 in H1. rewrite <- (plus_Snm_nSm (MapCard A (M2 A m0 m1)) 0) in H1. + rewrite <- (plus_n_O (S (MapCard A (M2 A m0 m1)))) in H1. unfold MapDisjoint, in_dom in |- *. + unfold MapGet at 2 in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H4. + rewrite <- (ad_eq_complete _ _ H4) in H2. rewrite (MapCard_Put_2 _ _ _ H1) in H2. + discriminate H2. + intro H4. rewrite H4 in H3. discriminate H3. + intros. unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H6. + unfold MapDisjoint in H0. apply H0 with (m' := m3) (a := ad_div_2 a). apply le_antisym. + apply MapMerge_Card_ub. + apply (fun p n m:nat => plus_le_reg_l n m p) with + (p := MapCard A m0 + MapCard A m2). + rewrite + (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) ( + MapCard A m1) (MapCard A m3)). + change + (MapCard A (M2 A (MapMerge A m0 m2) (MapMerge A m1 m3)) = + MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3)) + in H3. + rewrite <- H3. simpl in |- *. apply plus_le_compat_r. apply MapMerge_Card_ub. + elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m0 m1) in H7. + unfold in_dom in |- *. rewrite H7. reflexivity. + elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m2 m3) in H7. + unfold in_dom in |- *. rewrite H7. reflexivity. + intro H6. unfold MapDisjoint in H. apply H with (m' := m2) (a := ad_div_2 a). apply le_antisym. + apply MapMerge_Card_ub. + apply (fun p n m:nat => plus_le_reg_l n m p) with + (p := MapCard A m1 + MapCard A m3). + rewrite + (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A m0 + MapCard A m2)) + . + rewrite + (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) ( + MapCard A m1) (MapCard A m3)). + rewrite + (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A (MapMerge A m0 m2))) + . + change + (MapCard A (MapMerge A m0 m2) + MapCard A (MapMerge A m1 m3) = + MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3)) + in H3. + rewrite <- H3. apply plus_le_compat_l. apply MapMerge_Card_ub. + elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m0 m1) in H7. + unfold in_dom in |- *. rewrite H7. reflexivity. + elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m2 m3) in H7. + unfold in_dom in |- *. rewrite H7. reflexivity. + Qed. + + Lemma MapCard_is_Sn : + forall (m:Map A) (n:nat), + MapCard _ m = S n -> {a : ad | in_dom _ a m = true}. + Proof. + simple induction m. intros. discriminate H. + intros a y n H. split with a. unfold in_dom in |- *. rewrite (M1_semantics_1 _ a y). reflexivity. + intros. simpl in H1. elim (O_or_S (MapCard _ m0)). intro H2. elim H2. intros m2 H3. + elim (H _ (sym_eq H3)). intros a H4. split with (ad_double a). unfold in_dom in |- *. + rewrite (MapGet_M2_bit_0_0 A (ad_double a) (ad_double_bit_0 a) m0 m1). + rewrite (ad_double_div_2 a). elim (in_dom_some _ _ _ H4). intros y H5. rewrite H5. reflexivity. + intro H2. rewrite <- H2 in H1. simpl in H1. elim (H0 _ H1). intros a H3. + split with (ad_double_plus_un a). unfold in_dom in |- *. + rewrite + (MapGet_M2_bit_0_1 A (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) + m0 m1). + rewrite (ad_double_plus_un_div_2 a). elim (in_dom_some _ _ _ H3). intros y H4. rewrite H4. + reflexivity. + Qed. + +End MapCard. + +Section MapCard2. + + Variables A B : Set. + + Lemma MapSubset_card_eq_1 : + forall (n:nat) (m:Map A) (m':Map B), + MapSubset _ _ m m' -> + MapCard _ m = n -> MapCard _ m' = n -> MapSubset _ _ m' m. + Proof. + simple induction n. intros. unfold MapSubset, in_dom in |- *. intro. rewrite (MapCard_is_O _ m H0 a). + rewrite (MapCard_is_O _ m' H1 a). intro H2. discriminate H2. + intros. elim (MapCard_is_Sn A m n0 H1). intros a H3. elim (in_dom_some _ _ _ H3). + intros y H4. elim (in_dom_some _ _ _ (H0 _ H3)). intros y' H6. + cut (eqmap _ (MapPut _ (MapRemove _ m a) a y) m). intro. + cut (eqmap _ (MapPut _ (MapRemove _ m' a) a y') m'). intro. + apply MapSubset_ext with + (m0 := MapPut _ (MapRemove _ m' a) a y') + (m2 := MapPut _ (MapRemove _ m a) a y). + assumption. + assumption. + apply MapSubset_Put_mono. apply H. apply MapSubset_Remove_mono. assumption. + rewrite <- (MapCard_Remove_2_conv _ m a y H4) in H1. inversion_clear H1. reflexivity. + rewrite <- (MapCard_Remove_2_conv _ m' a y' H6) in H2. inversion_clear H2. reflexivity. + unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove B m' a) a y' a0). + elim (sumbool_of_bool (ad_eq a a0)). intro H7. rewrite H7. rewrite <- (ad_eq_complete _ _ H7). + apply sym_eq. assumption. + intro H7. rewrite H7. rewrite (MapRemove_semantics _ m' a a0). rewrite H7. reflexivity. + unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove A m a) a y a0). + elim (sumbool_of_bool (ad_eq a a0)). intro H7. rewrite H7. rewrite <- (ad_eq_complete _ _ H7). + apply sym_eq. assumption. + intro H7. rewrite H7. rewrite (MapRemove_semantics A m a a0). rewrite H7. reflexivity. + Qed. + + Lemma MapDomRestrTo_Card_ub_r : + forall (m:Map A) (m':Map B), + MapCard A (MapDomRestrTo A B m m') <= MapCard B m'. + Proof. + simple induction m. intro. simpl in |- *. apply le_O_n. + intros a y m'. simpl in |- *. elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y0 H0. + rewrite H0. elim (MapCard_is_not_O B m' a y0 H0). intros n H1. rewrite H1. simpl in |- *. + apply le_n_S. apply le_O_n. + intro H. rewrite H. simpl in |- *. apply le_O_n. + simple induction m'. simpl in |- *. apply le_O_n. + + intros a y. unfold MapDomRestrTo in |- *. case (MapGet A (M2 A m0 m1) a). simpl in |- *. apply le_O_n. + intro. simpl in |- *. apply le_n. + intros. simpl in |- *. rewrite + (MapCard_makeM2 A (MapDomRestrTo A B m0 m2) (MapDomRestrTo A B m1 m3)) + . + apply plus_le_compat. apply H. + apply H0. + Qed. + +End MapCard2. + +Section MapCard3. + + Variables A B : Set. + + Lemma MapMerge_Card_lb_l : + forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m. + Proof. + unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m')). + rewrite (plus_comm (MapCard A m') (MapCard A m)). + rewrite (plus_comm (MapCard A m') (MapCard A (MapMerge A m m'))). + rewrite (MapMerge_Restr_Card A m m'). apply plus_le_compat_l. apply MapDomRestrTo_Card_ub_r. + Qed. + + Lemma MapMerge_Card_lb_r : + forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m'. + Proof. + unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m)). rewrite (MapMerge_Restr_Card A m m'). + rewrite + (plus_comm (MapCard A (MapMerge A m m')) + (MapCard A (MapDomRestrTo A A m m'))). + apply plus_le_compat_r. apply MapDomRestrTo_Card_ub_l. + Qed. + + Lemma MapDomRestrBy_Card_lb : + forall (m:Map A) (m':Map B), + MapCard B m' + MapCard A (MapDomRestrBy A B m m') >= MapCard A m. + Proof. + unfold ge in |- *. intros. rewrite (MapSplit_Card A B m m'). apply plus_le_compat_r. + apply MapDomRestrTo_Card_ub_r. + Qed. + + Lemma MapSubset_Card_le : + forall (m:Map A) (m':Map B), + MapSubset A B m m' -> MapCard A m <= MapCard B m'. + Proof. + intros. apply le_trans with (m := MapCard B m' + MapCard A (MapDomRestrBy A B m m')). + exact (MapDomRestrBy_Card_lb m m'). + rewrite (MapCard_ext _ _ _ (MapSubset_imp_2 _ _ _ _ H)). simpl in |- *. rewrite <- plus_n_O. + apply le_n. + Qed. + + Lemma MapSubset_card_eq : + forall (m:Map A) (m':Map B), + MapSubset _ _ m m' -> + MapCard _ m' <= MapCard _ m -> eqmap _ (MapDom _ m) (MapDom _ m'). + Proof. + intros. apply MapSubset_antisym. assumption. + cut (MapCard B m' = MapCard A m). intro. apply (MapSubset_card_eq_1 A B (MapCard A m)). + assumption. + reflexivity. + assumption. + apply le_antisym. assumption. + apply MapSubset_Card_le. assumption. + Qed. + +End MapCard3.
\ No newline at end of file |