summaryrefslogtreecommitdiff
path: root/theories/IntMap/Mapcanon.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Mapcanon.v')
-rw-r--r--theories/IntMap/Mapcanon.v399
1 files changed, 399 insertions, 0 deletions
diff --git a/theories/IntMap/Mapcanon.v b/theories/IntMap/Mapcanon.v
new file mode 100644
index 00000000..868fbe5e
--- /dev/null
+++ b/theories/IntMap/Mapcanon.v
@@ -0,0 +1,399 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapcanon.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Mapiter.
+Require Import Fset.
+Require Import List.
+Require Import Lsort.
+Require Import Mapsubset.
+Require Import Mapcard.
+
+Section MapCanon.
+
+ Variable A : Set.
+
+ Inductive mapcanon : Map A -> Prop :=
+ | M0_canon : mapcanon (M0 A)
+ | M1_canon : forall (a:ad) (y:A), mapcanon (M1 A a y)
+ | M2_canon :
+ forall m1 m2:Map A,
+ mapcanon m1 ->
+ mapcanon m2 -> 2 <= MapCard A (M2 A m1 m2) -> mapcanon (M2 A m1 m2).
+
+ Lemma mapcanon_M2 :
+ forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> 2 <= MapCard A (M2 A m1 m2).
+ Proof.
+ intros. inversion H. assumption.
+ Qed.
+
+ Lemma mapcanon_M2_1 :
+ forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m1.
+ Proof.
+ intros. inversion H. assumption.
+ Qed.
+
+ Lemma mapcanon_M2_2 :
+ forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m2.
+ Proof.
+ intros. inversion H. assumption.
+ Qed.
+
+ Lemma M2_eqmap_1 :
+ forall m0 m1 m2 m3:Map A,
+ eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m0 m2.
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite <- (ad_double_div_2 a).
+ rewrite <- (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m0 m1).
+ rewrite <- (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m2 m3).
+ exact (H (ad_double a)).
+ Qed.
+
+ Lemma M2_eqmap_2 :
+ forall m0 m1 m2 m3:Map A,
+ eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m1 m3.
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite <- (ad_double_plus_un_div_2 a).
+ rewrite <- (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m0 m1).
+ rewrite <- (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m2 m3).
+ exact (H (ad_double_plus_un a)).
+ Qed.
+
+ Lemma mapcanon_unique :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> eqmap A m m' -> m = m'.
+ Proof.
+ simple induction m. simple induction m'. trivial.
+ intros a y H H0 H1. cut (NONE A = MapGet A (M1 A a y) a). simpl in |- *. rewrite (ad_eq_correct a).
+ intro. discriminate H2.
+ exact (H1 a).
+ intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
+ rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
+ intros a y. simple induction m'. intros. cut (MapGet A (M1 A a y) a = NONE A). simpl in |- *.
+ rewrite (ad_eq_correct a). intro. discriminate H2.
+ exact (H1 a).
+ intros a0 y0 H H0 H1. cut (MapGet A (M1 A a y) a = MapGet A (M1 A a0 y0) a). simpl in |- *.
+ rewrite (ad_eq_correct a). intro. elim (sumbool_of_bool (ad_eq a0 a)). intro H3.
+ rewrite H3 in H2. inversion H2. rewrite (ad_eq_complete _ _ H3). reflexivity.
+ intro H3. rewrite H3 in H2. discriminate H2.
+ exact (H1 a).
+ intros. cut (2 <= MapCard A (M1 A a y)). intro. elim (le_Sn_O _ (le_S_n _ _ H4)).
+ rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
+ simple induction m'. intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
+ rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
+ intros a y H1 H2 H3. cut (2 <= MapCard A (M1 A a y)). intro.
+ elim (le_Sn_O _ (le_S_n _ _ H4)).
+ rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
+ intros. rewrite (H m2). rewrite (H0 m3). reflexivity.
+ exact (mapcanon_M2_2 _ _ H3).
+ exact (mapcanon_M2_2 _ _ H4).
+ exact (M2_eqmap_2 _ _ _ _ H5).
+ exact (mapcanon_M2_1 _ _ H3).
+ exact (mapcanon_M2_1 _ _ H4).
+ exact (M2_eqmap_1 _ _ _ _ H5).
+ Qed.
+
+ Lemma MapPut1_canon :
+ forall (p:positive) (a a':ad) (y y':A), mapcanon (MapPut1 A a y a' y' p).
+ Proof.
+ simple induction p. simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ apply le_n.
+ apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ apply le_n.
+ simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M0_canon.
+ apply H.
+ simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
+ apply M2_canon. apply H.
+ apply M0_canon.
+ simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
+ simpl in |- *. simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ simpl in |- *. apply le_n.
+ apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ simpl in |- *. apply le_n.
+ Qed.
+
+ Lemma MapPut_canon :
+ forall m:Map A,
+ mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut A m a y).
+ Proof.
+ simple induction m. intros. simpl in |- *. apply M1_canon.
+ intros a0 y0 H a y. simpl in |- *. case (ad_xor a0 a). apply M1_canon.
+ intro. apply MapPut1_canon.
+ intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
+ apply plus_le_compat. exact (MapCard_Put_lb A m0 ad_z y).
+ apply le_n.
+ intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
+ apply H0. exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. exact (MapCard_Put_lb A m1 (ad_x p0) y).
+ intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_r. exact (MapCard_Put_lb A m0 (ad_x p0) y).
+ apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
+ apply H0. apply (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. exact (MapCard_Put_lb A m1 ad_z y).
+ Qed.
+
+ Lemma MapPut_behind_canon :
+ forall m:Map A,
+ mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut_behind A m a y).
+ Proof.
+ simple induction m. intros. simpl in |- *. apply M1_canon.
+ intros a0 y0 H a y. simpl in |- *. case (ad_xor a0 a). apply M1_canon.
+ intro. apply MapPut1_canon.
+ intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
+ apply plus_le_compat. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 ad_z y).
+ apply le_n.
+ intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
+ apply H0. exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 (ad_x p0) y).
+ intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_r. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 (ad_x p0) y).
+ apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
+ apply H0. apply (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 ad_z y).
+ Qed.
+
+ Lemma makeM2_canon :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (makeM2 A m m').
+ Proof.
+ intro. case m. intro. case m'. intros. exact M0_canon.
+ intros a y H H0. exact (M1_canon (ad_double_plus_un a) y).
+ intros. simpl in |- *. apply M2_canon; try assumption. exact (mapcanon_M2 m0 m1 H0).
+ intros a y m'. case m'. intros. exact (M1_canon (ad_double a) y).
+ intros a0 y0 H H0. simpl in |- *. apply M2_canon; try assumption. apply le_n.
+ intros. simpl in |- *. apply M2_canon; try assumption.
+ apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H0).
+ exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))).
+ simpl in |- *. intros. apply M2_canon; try assumption.
+ apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H).
+ exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')).
+ Qed.
+
+ Fixpoint MapCanonicalize (m:Map A) : Map A :=
+ match m with
+ | M2 m0 m1 => makeM2 A (MapCanonicalize m0) (MapCanonicalize m1)
+ | _ => m
+ end.
+
+ Lemma mapcanon_exists_1 : forall m:Map A, eqmap A m (MapCanonicalize m).
+ Proof.
+ simple induction m. apply eqmap_refl.
+ intros. apply eqmap_refl.
+ intros. simpl in |- *. unfold eqmap, eqm in |- *. intro.
+ rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a).
+ rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
+ rewrite <- (H (ad_div_2 a)). rewrite <- (H0 (ad_div_2 a)). reflexivity.
+ Qed.
+
+ Lemma mapcanon_exists_2 : forall m:Map A, mapcanon (MapCanonicalize m).
+ Proof.
+ simple induction m. apply M0_canon.
+ intros. simpl in |- *. apply M1_canon.
+ intros. simpl in |- *. apply makeM2_canon; assumption.
+ Qed.
+
+ Lemma mapcanon_exists :
+ forall m:Map A, {m' : Map A | eqmap A m m' /\ mapcanon m'}.
+ Proof.
+ intro. split with (MapCanonicalize m). split. apply mapcanon_exists_1.
+ apply mapcanon_exists_2.
+ Qed.
+
+ Lemma MapRemove_canon :
+ forall m:Map A, mapcanon m -> forall a:ad, mapcanon (MapRemove A m a).
+ Proof.
+ simple induction m. intros. exact M0_canon.
+ intros a y H a0. simpl in |- *. case (ad_eq a a0). exact M0_canon.
+ assumption.
+ intros. simpl in |- *. case (ad_bit_0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
+ apply H0. exact (mapcanon_M2_2 _ _ H1).
+ apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
+ exact (mapcanon_M2_2 _ _ H1).
+ Qed.
+
+ Lemma MapMerge_canon :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapMerge A m m').
+ Proof.
+ simple induction m. intros. exact H0.
+ simpl in |- *. intros a y m' H H0. exact (MapPut_behind_canon m' H0 a y).
+ simple induction m'. intros. exact H1.
+ intros a y H1 H2. unfold MapMerge in |- *. exact (MapPut_canon _ H1 a y).
+ intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
+ exact (mapcanon_M2_1 _ _ H4).
+ apply H0. exact (mapcanon_M2_2 _ _ H3).
+ exact (mapcanon_M2_2 _ _ H4).
+ change (2 <= MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3))) in |- *.
+ apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H3).
+ exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)).
+ Qed.
+
+ Lemma MapDelta_canon :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapDelta A m m').
+ Proof.
+ simple induction m. intros. exact H0.
+ simpl in |- *. intros a y m' H H0. case (MapGet A m' a). exact (MapPut_canon m' H0 a y).
+ intro. exact (MapRemove_canon m' H0 a).
+ simple induction m'. intros. exact H1.
+ unfold MapDelta in |- *. intros a y H1 H2. case (MapGet A (M2 A m0 m1) a).
+ exact (MapPut_canon _ H1 a y).
+ intro. exact (MapRemove_canon _ H1 a).
+ intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
+ exact (mapcanon_M2_1 _ _ H4).
+ apply H0. exact (mapcanon_M2_2 _ _ H3).
+ exact (mapcanon_M2_2 _ _ H4).
+ Qed.
+
+ Variable B : Set.
+
+ Lemma MapDomRestrTo_canon :
+ forall m:Map A,
+ mapcanon m -> forall m':Map B, mapcanon (MapDomRestrTo A B m m').
+ Proof.
+ simple induction m. intros. exact M0_canon.
+ simpl in |- *. intros a y H m'. case (MapGet B m' a). exact M0_canon.
+ intro. apply M1_canon.
+ simple induction m'. exact M0_canon.
+ unfold MapDomRestrTo in |- *. intros a y. case (MapGet A (M2 A m0 m1) a). exact M0_canon.
+ intro. apply M1_canon.
+ intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ apply H0. exact (mapcanon_M2_2 m0 m1 H1).
+ Qed.
+
+ Lemma MapDomRestrBy_canon :
+ forall m:Map A,
+ mapcanon m -> forall m':Map B, mapcanon (MapDomRestrBy A B m m').
+ Proof.
+ simple induction m. intros. exact M0_canon.
+ simpl in |- *. intros a y H m'. case (MapGet B m' a). assumption.
+ intro. exact M0_canon.
+ simple induction m'. exact H1.
+ intros a y. simpl in |- *. case (ad_bit_0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
+ apply MapRemove_canon. exact (mapcanon_M2_2 _ _ H1).
+ apply makeM2_canon. apply MapRemove_canon. exact (mapcanon_M2_1 _ _ H1).
+ exact (mapcanon_M2_2 _ _ H1).
+ intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
+ apply H0. exact (mapcanon_M2_2 _ _ H1).
+ Qed.
+
+ Lemma Map_of_alist_canon : forall l:alist A, mapcanon (Map_of_alist A l).
+ Proof.
+ simple induction l. exact M0_canon.
+ intro r. elim r. intros a y l0 H. simpl in |- *. apply MapPut_canon. assumption.
+ Qed.
+
+ Lemma MapSubset_c_1 :
+ forall (m:Map A) (m':Map B),
+ mapcanon m -> MapSubset A B m m' -> MapDomRestrBy A B m m' = M0 A.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon. assumption.
+ apply M0_canon.
+ exact (MapSubset_imp_2 _ _ m m' H0).
+ Qed.
+
+ Lemma MapSubset_c_2 :
+ forall (m:Map A) (m':Map B),
+ MapDomRestrBy A B m m' = M0 A -> MapSubset A B m m'.
+ Proof.
+ intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *. rewrite H. apply eqmap_refl.
+ Qed.
+
+End MapCanon.
+
+Section FSetCanon.
+
+ Variable A : Set.
+
+ Lemma MapDom_canon :
+ forall m:Map A, mapcanon A m -> mapcanon unit (MapDom A m).
+ Proof.
+ simple induction m. intro. exact (M0_canon unit).
+ intros a y H. exact (M1_canon unit a _).
+ intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 A _ _ H1).
+ apply H0. exact (mapcanon_M2_2 A _ _ H1).
+ change (2 <= MapCard unit (MapDom A (M2 A m0 m1))) in |- *. rewrite <- MapCard_Dom.
+ exact (mapcanon_M2 A _ _ H1).
+ Qed.
+
+End FSetCanon.
+
+Section MapFoldCanon.
+
+ Variables A B : Set.
+
+ Lemma MapFold_canon_1 :
+ forall m0:Map B,
+ mapcanon B m0 ->
+ forall op:Map B -> Map B -> Map B,
+ (forall m1:Map B,
+ mapcanon B m1 ->
+ forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
+ forall f:ad -> A -> Map B,
+ (forall (a:ad) (y:A), mapcanon B (f a y)) ->
+ forall (m:Map A) (pf:ad -> ad),
+ mapcanon B (MapFold1 A (Map B) m0 op f pf m).
+ Proof.
+ simple induction m. intro. exact H.
+ intros a y pf. simpl in |- *. apply H1.
+ intros. simpl in |- *. apply H0. apply H2.
+ apply H3.
+ Qed.
+
+ Lemma MapFold_canon :
+ forall m0:Map B,
+ mapcanon B m0 ->
+ forall op:Map B -> Map B -> Map B,
+ (forall m1:Map B,
+ mapcanon B m1 ->
+ forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
+ forall f:ad -> A -> Map B,
+ (forall (a:ad) (y:A), mapcanon B (f a y)) ->
+ forall m:Map A, mapcanon B (MapFold A (Map B) m0 op f m).
+ Proof.
+ intros. exact (MapFold_canon_1 m0 H op H0 f H1 m (fun a:ad => a)).
+ Qed.
+
+ Lemma MapCollect_canon :
+ forall f:ad -> A -> Map B,
+ (forall (a:ad) (y:A), mapcanon B (f a y)) ->
+ forall m:Map A, mapcanon B (MapCollect A B f m).
+ Proof.
+ intros. rewrite MapCollect_as_Fold. apply MapFold_canon. apply M0_canon.
+ intros. exact (MapMerge_canon B m1 m2 H0 H1).
+ assumption.
+ Qed.
+
+End MapFoldCanon. \ No newline at end of file