diff options
Diffstat (limited to 'theories/IntMap/Mapc.v')
-rw-r--r-- | theories/IntMap/Mapc.v | 542 |
1 files changed, 542 insertions, 0 deletions
diff --git a/theories/IntMap/Mapc.v b/theories/IntMap/Mapc.v new file mode 100644 index 00000000..7a394abb --- /dev/null +++ b/theories/IntMap/Mapc.v @@ -0,0 +1,542 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(*i $Id: Mapc.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*) + +Require Import Bool. +Require Import Sumbool. +Require Import Arith. +Require Import ZArith. +Require Import Addr. +Require Import Adist. +Require Import Addec. +Require Import Map. +Require Import Mapaxioms. +Require Import Fset. +Require Import Mapiter. +Require Import Mapsubset. +Require Import List. +Require Import Lsort. +Require Import Mapcard. +Require Import Mapcanon. + +Section MapC. + + Variables A B C : Set. + + Lemma MapPut_as_Merge_c : + forall m:Map A, + mapcanon A m -> + forall (a:ad) (y:A), MapPut A m a y = MapMerge A m (M1 A a y). + Proof. + intros. apply mapcanon_unique. exact (MapPut_canon A m H a y). + apply MapMerge_canon. assumption. + apply M1_canon. + apply MapPut_as_Merge. + Qed. + + Lemma MapPut_behind_as_Merge_c : + forall m:Map A, + mapcanon A m -> + forall (a:ad) (y:A), MapPut_behind A m a y = MapMerge A (M1 A a y) m. + Proof. + intros. apply mapcanon_unique. exact (MapPut_behind_canon A m H a y). + apply MapMerge_canon. apply M1_canon. + assumption. + apply MapPut_behind_as_Merge. + Qed. + + Lemma MapMerge_empty_m_c : forall m:Map A, MapMerge A (M0 A) m = m. + Proof. + trivial. + Qed. + + Lemma MapMerge_assoc_c : + forall m m' m'':Map A, + mapcanon A m -> + mapcanon A m' -> + mapcanon A m'' -> + MapMerge A (MapMerge A m m') m'' = MapMerge A m (MapMerge A m' m''). + Proof. + intros. apply mapcanon_unique. + apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption. + apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption. + apply MapMerge_assoc. + Qed. + + Lemma MapMerge_idempotent_c : + forall m:Map A, mapcanon A m -> MapMerge A m m = m. + Proof. + intros. apply mapcanon_unique. apply MapMerge_canon; assumption. + assumption. + apply MapMerge_idempotent. + Qed. + + Lemma MapMerge_RestrTo_l_c : + forall m m' m'':Map A, + mapcanon A m -> + mapcanon A m'' -> + MapMerge A (MapDomRestrTo A A m m') m'' = + MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m''). + Proof. + intros. apply mapcanon_unique. apply MapMerge_canon. apply MapDomRestrTo_canon; assumption. + assumption. + apply MapDomRestrTo_canon; apply MapMerge_canon; assumption. + apply MapMerge_RestrTo_l. + Qed. + + Lemma MapRemove_as_RestrBy_c : + forall m:Map A, + mapcanon A m -> + forall (a:ad) (y:B), MapRemove A m a = MapDomRestrBy A B m (M1 B a y). + Proof. + intros. apply mapcanon_unique. apply MapRemove_canon; assumption. + apply MapDomRestrBy_canon; assumption. + apply MapRemove_as_RestrBy. + Qed. + + Lemma MapDomRestrTo_assoc_c : + forall (m:Map A) (m':Map B) (m'':Map C), + mapcanon A m -> + MapDomRestrTo A C (MapDomRestrTo A B m m') m'' = + MapDomRestrTo A B m (MapDomRestrTo B C m' m''). + Proof. + intros. apply mapcanon_unique. apply MapDomRestrTo_canon; try assumption. + apply MapDomRestrTo_canon; try assumption. + apply MapDomRestrTo_canon; try assumption. + apply MapDomRestrTo_assoc. + Qed. + + Lemma MapDomRestrTo_idempotent_c : + forall m:Map A, mapcanon A m -> MapDomRestrTo A A m m = m. + Proof. + intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption. + assumption. + apply MapDomRestrTo_idempotent. + Qed. + + Lemma MapDomRestrTo_Dom_c : + forall (m:Map A) (m':Map B), + mapcanon A m -> + MapDomRestrTo A B m m' = MapDomRestrTo A unit m (MapDom B m'). + Proof. + intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption. + apply MapDomRestrTo_canon; assumption. + apply MapDomRestrTo_Dom. + Qed. + + Lemma MapDomRestrBy_Dom_c : + forall (m:Map A) (m':Map B), + mapcanon A m -> + MapDomRestrBy A B m m' = MapDomRestrBy A unit m (MapDom B m'). + Proof. + intros. apply mapcanon_unique. apply MapDomRestrBy_canon; assumption. + apply MapDomRestrBy_canon; assumption. + apply MapDomRestrBy_Dom. + Qed. + + Lemma MapDomRestrBy_By_c : + forall (m:Map A) (m' m'':Map B), + mapcanon A m -> + MapDomRestrBy A B (MapDomRestrBy A B m m') m'' = + MapDomRestrBy A B m (MapMerge B m' m''). + Proof. + intros. apply mapcanon_unique. apply MapDomRestrBy_canon; try assumption. + apply MapDomRestrBy_canon; try assumption. + apply MapDomRestrBy_canon; try assumption. + apply MapDomRestrBy_By. + Qed. + + Lemma MapDomRestrBy_By_comm_c : + forall (m:Map A) (m':Map B) (m'':Map C), + mapcanon A m -> + MapDomRestrBy A C (MapDomRestrBy A B m m') m'' = + MapDomRestrBy A B (MapDomRestrBy A C m m'') m'. + Proof. + intros. apply mapcanon_unique. apply MapDomRestrBy_canon. + apply MapDomRestrBy_canon; assumption. + apply MapDomRestrBy_canon. apply MapDomRestrBy_canon; assumption. + apply MapDomRestrBy_By_comm. + Qed. + + Lemma MapDomRestrBy_To_c : + forall (m:Map A) (m':Map B) (m'':Map C), + mapcanon A m -> + MapDomRestrBy A C (MapDomRestrTo A B m m') m'' = + MapDomRestrTo A B m (MapDomRestrBy B C m' m''). + Proof. + intros. apply mapcanon_unique. apply MapDomRestrBy_canon. + apply MapDomRestrTo_canon; assumption. + apply MapDomRestrTo_canon; assumption. + apply MapDomRestrBy_To. + Qed. + + Lemma MapDomRestrBy_To_comm_c : + forall (m:Map A) (m':Map B) (m'':Map C), + mapcanon A m -> + MapDomRestrBy A C (MapDomRestrTo A B m m') m'' = + MapDomRestrTo A B (MapDomRestrBy A C m m'') m'. + Proof. + intros. apply mapcanon_unique. apply MapDomRestrBy_canon. + apply MapDomRestrTo_canon; assumption. + apply MapDomRestrTo_canon. apply MapDomRestrBy_canon; assumption. + apply MapDomRestrBy_To_comm. + Qed. + + Lemma MapDomRestrTo_By_c : + forall (m:Map A) (m':Map B) (m'':Map C), + mapcanon A m -> + MapDomRestrTo A C (MapDomRestrBy A B m m') m'' = + MapDomRestrTo A C m (MapDomRestrBy C B m'' m'). + Proof. + intros. apply mapcanon_unique. apply MapDomRestrTo_canon. + apply MapDomRestrBy_canon; assumption. + apply MapDomRestrTo_canon; assumption. + apply MapDomRestrTo_By. + Qed. + + Lemma MapDomRestrTo_By_comm_c : + forall (m:Map A) (m':Map B) (m'':Map C), + mapcanon A m -> + MapDomRestrTo A C (MapDomRestrBy A B m m') m'' = + MapDomRestrBy A B (MapDomRestrTo A C m m'') m'. + Proof. + intros. apply mapcanon_unique. apply MapDomRestrTo_canon. + apply MapDomRestrBy_canon; assumption. + apply MapDomRestrBy_canon. apply MapDomRestrTo_canon; assumption. + apply MapDomRestrTo_By_comm. + Qed. + + Lemma MapDomRestrTo_To_comm_c : + forall (m:Map A) (m':Map B) (m'':Map C), + mapcanon A m -> + MapDomRestrTo A C (MapDomRestrTo A B m m') m'' = + MapDomRestrTo A B (MapDomRestrTo A C m m'') m'. + Proof. + intros. apply mapcanon_unique. apply MapDomRestrTo_canon. + apply MapDomRestrTo_canon; assumption. + apply MapDomRestrTo_canon. apply MapDomRestrTo_canon; assumption. + apply MapDomRestrTo_To_comm. + Qed. + + Lemma MapMerge_DomRestrTo_c : + forall (m m':Map A) (m'':Map B), + mapcanon A m -> + mapcanon A m' -> + MapDomRestrTo A B (MapMerge A m m') m'' = + MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m''). + Proof. + intros. apply mapcanon_unique. apply MapDomRestrTo_canon. + apply MapMerge_canon; assumption. + apply MapMerge_canon. apply MapDomRestrTo_canon; assumption. + apply MapDomRestrTo_canon; assumption. + apply MapMerge_DomRestrTo. + Qed. + + Lemma MapMerge_DomRestrBy_c : + forall (m m':Map A) (m'':Map B), + mapcanon A m -> + mapcanon A m' -> + MapDomRestrBy A B (MapMerge A m m') m'' = + MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m''). + Proof. + intros. apply mapcanon_unique. apply MapDomRestrBy_canon. apply MapMerge_canon; assumption. + apply MapMerge_canon. apply MapDomRestrBy_canon; assumption. + apply MapDomRestrBy_canon; assumption. + apply MapMerge_DomRestrBy. + Qed. + + Lemma MapDelta_nilpotent_c : + forall m:Map A, mapcanon A m -> MapDelta A m m = M0 A. + Proof. + intros. apply mapcanon_unique. apply MapDelta_canon; assumption. + apply M0_canon. + apply MapDelta_nilpotent. + Qed. + + Lemma MapDelta_as_Merge_c : + forall m m':Map A, + mapcanon A m -> + mapcanon A m' -> + MapDelta A m m' = + MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m). + Proof. + intros. apply mapcanon_unique. apply MapDelta_canon; assumption. + apply MapMerge_canon; apply MapDomRestrBy_canon; assumption. + apply MapDelta_as_Merge. + Qed. + + Lemma MapDelta_as_DomRestrBy_c : + forall m m':Map A, + mapcanon A m -> + mapcanon A m' -> + MapDelta A m m' = + MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m'). + Proof. + intros. apply mapcanon_unique. apply MapDelta_canon; assumption. + apply MapDomRestrBy_canon. apply MapMerge_canon; assumption. + apply MapDelta_as_DomRestrBy. + Qed. + + Lemma MapDelta_as_DomRestrBy_2_c : + forall m m':Map A, + mapcanon A m -> + mapcanon A m' -> + MapDelta A m m' = + MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m). + Proof. + intros. apply mapcanon_unique. apply MapDelta_canon; assumption. + apply MapDomRestrBy_canon. apply MapMerge_canon; assumption. + apply MapDelta_as_DomRestrBy_2. + Qed. + + Lemma MapDelta_sym_c : + forall m m':Map A, + mapcanon A m -> mapcanon A m' -> MapDelta A m m' = MapDelta A m' m. + Proof. + intros. apply mapcanon_unique. apply MapDelta_canon; assumption. + apply MapDelta_canon; assumption. apply MapDelta_sym. + Qed. + + Lemma MapDom_Split_1_c : + forall (m:Map A) (m':Map B), + mapcanon A m -> + m = MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'). + Proof. + intros. apply mapcanon_unique. assumption. + apply MapMerge_canon. apply MapDomRestrTo_canon; assumption. + apply MapDomRestrBy_canon; assumption. + apply MapDom_Split_1. + Qed. + + Lemma MapDom_Split_2_c : + forall (m:Map A) (m':Map B), + mapcanon A m -> + m = MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m'). + Proof. + intros. apply mapcanon_unique. assumption. + apply MapMerge_canon. apply MapDomRestrBy_canon; assumption. + apply MapDomRestrTo_canon; assumption. + apply MapDom_Split_2. + Qed. + + Lemma MapDom_Split_3_c : + forall (m:Map A) (m':Map B), + mapcanon A m -> + MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') = + M0 A. + Proof. + intros. apply mapcanon_unique. apply MapDomRestrTo_canon. + apply MapDomRestrTo_canon; assumption. + apply M0_canon. + apply MapDom_Split_3. + Qed. + + Lemma Map_of_alist_of_Map_c : + forall m:Map A, mapcanon A m -> Map_of_alist A (alist_of_Map A m) = m. + Proof. + intros. apply mapcanon_unique; try assumption. apply Map_of_alist_canon. + apply Map_of_alist_of_Map. + Qed. + + Lemma alist_of_Map_of_alist_c : + forall l:alist A, + alist_sorted_2 A l -> alist_of_Map A (Map_of_alist A l) = l. + Proof. + intros. apply alist_canonical. apply alist_of_Map_of_alist. + apply alist_of_Map_sorts2. + assumption. + Qed. + + Lemma MapSubset_antisym_c : + forall (m:Map A) (m':Map B), + mapcanon A m -> + mapcanon B m' -> + MapSubset A B m m' -> MapSubset B A m' m -> MapDom A m = MapDom B m'. + Proof. + intros. apply (mapcanon_unique unit). apply MapDom_canon; assumption. + apply MapDom_canon; assumption. + apply MapSubset_antisym; assumption. + Qed. + + Lemma FSubset_antisym_c : + forall s s':FSet, + mapcanon unit s -> + mapcanon unit s' -> MapSubset _ _ s s' -> MapSubset _ _ s' s -> s = s'. + Proof. + intros. apply (mapcanon_unique unit); try assumption. apply FSubset_antisym; assumption. + Qed. + + Lemma MapDisjoint_empty_c : + forall m:Map A, mapcanon A m -> MapDisjoint A A m m -> m = M0 A. + Proof. + intros. apply mapcanon_unique; try assumption; try apply M0_canon. + apply MapDisjoint_empty; assumption. + Qed. + + Lemma MapDelta_disjoint_c : + forall m m':Map A, + mapcanon A m -> + mapcanon A m' -> + MapDisjoint A A m m' -> MapDelta A m m' = MapMerge A m m'. + Proof. + intros. apply mapcanon_unique. apply MapDelta_canon; assumption. + apply MapMerge_canon; assumption. apply MapDelta_disjoint; assumption. + Qed. + +End MapC. + +Lemma FSetDelta_assoc_c : + forall s s' s'':FSet, + mapcanon unit s -> + mapcanon unit s' -> + mapcanon unit s'' -> + MapDelta _ (MapDelta _ s s') s'' = MapDelta _ s (MapDelta _ s' s''). +Proof. + intros. apply (mapcanon_unique unit). apply MapDelta_canon. apply MapDelta_canon; assumption. + assumption. + apply MapDelta_canon. assumption. + apply MapDelta_canon; assumption. + apply FSetDelta_assoc; assumption. +Qed. + +Lemma FSet_ext_c : + forall s s':FSet, + mapcanon unit s -> + mapcanon unit s' -> (forall a:ad, in_FSet a s = in_FSet a s') -> s = s'. +Proof. + intros. apply (mapcanon_unique unit); try assumption. apply FSet_ext. assumption. +Qed. + +Lemma FSetUnion_comm_c : + forall s s':FSet, + mapcanon unit s -> mapcanon unit s' -> FSetUnion s s' = FSetUnion s' s. +Proof. + intros. + apply (mapcanon_unique unit); + try (unfold FSetUnion in |- *; apply MapMerge_canon; assumption). + apply FSetUnion_comm. +Qed. + +Lemma FSetUnion_assoc_c : + forall s s' s'':FSet, + mapcanon unit s -> + mapcanon unit s' -> + mapcanon unit s'' -> + FSetUnion (FSetUnion s s') s'' = FSetUnion s (FSetUnion s' s''). +Proof. + exact (MapMerge_assoc_c unit). +Qed. + +Lemma FSetUnion_M0_s_c : forall s:FSet, FSetUnion (M0 unit) s = s. +Proof. + exact (MapMerge_empty_m_c unit). +Qed. + +Lemma FSetUnion_s_M0_c : forall s:FSet, FSetUnion s (M0 unit) = s. +Proof. + exact (MapMerge_m_empty_1 unit). +Qed. + +Lemma FSetUnion_idempotent : + forall s:FSet, mapcanon unit s -> FSetUnion s s = s. +Proof. + exact (MapMerge_idempotent_c unit). +Qed. + +Lemma FSetInter_comm_c : + forall s s':FSet, + mapcanon unit s -> mapcanon unit s' -> FSetInter s s' = FSetInter s' s. +Proof. + intros. + apply (mapcanon_unique unit); + try (unfold FSetInter in |- *; apply MapDomRestrTo_canon; assumption). + apply FSetInter_comm. +Qed. + +Lemma FSetInter_assoc_c : + forall s s' s'':FSet, + mapcanon unit s -> + FSetInter (FSetInter s s') s'' = FSetInter s (FSetInter s' s''). +Proof. + exact (MapDomRestrTo_assoc_c unit unit unit). +Qed. + +Lemma FSetInter_M0_s_c : forall s:FSet, FSetInter (M0 unit) s = M0 unit. +Proof. + trivial. +Qed. + +Lemma FSetInter_s_M0_c : forall s:FSet, FSetInter s (M0 unit) = M0 unit. +Proof. + exact (MapDomRestrTo_m_empty_1 unit unit). +Qed. + +Lemma FSetInter_idempotent : + forall s:FSet, mapcanon unit s -> FSetInter s s = s. +Proof. + exact (MapDomRestrTo_idempotent_c unit). +Qed. + +Lemma FSetUnion_Inter_l_c : + forall s s' s'':FSet, + mapcanon unit s -> + mapcanon unit s'' -> + FSetUnion (FSetInter s s') s'' = + FSetInter (FSetUnion s s'') (FSetUnion s' s''). +Proof. + intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption. + unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption. + unfold FSetInter in |- *; unfold FSetUnion in |- *; + apply MapDomRestrTo_canon; apply MapMerge_canon; + assumption. + apply FSetUnion_Inter_l. +Qed. + +Lemma FSetUnion_Inter_r : + forall s s' s'':FSet, + mapcanon unit s -> + mapcanon unit s' -> + FSetUnion s (FSetInter s' s'') = + FSetInter (FSetUnion s s') (FSetUnion s s''). +Proof. + intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption. + unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption. + unfold FSetInter in |- *; unfold FSetUnion in |- *; + apply MapDomRestrTo_canon; apply MapMerge_canon; + assumption. + apply FSetUnion_Inter_r. +Qed. + +Lemma FSetInter_Union_l_c : + forall s s' s'':FSet, + mapcanon unit s -> + mapcanon unit s' -> + FSetInter (FSetUnion s s') s'' = + FSetUnion (FSetInter s s'') (FSetInter s' s''). +Proof. + intros. apply (mapcanon_unique unit). unfold FSetInter in |- *. + apply MapDomRestrTo_canon; try assumption. unfold FSetUnion in |- *. + apply MapMerge_canon; assumption. + unfold FSetUnion in |- *; unfold FSetInter in |- *; apply MapMerge_canon; + apply MapDomRestrTo_canon; assumption. + apply FSetInter_Union_l. +Qed. + +Lemma FSetInter_Union_r : + forall s s' s'':FSet, + mapcanon unit s -> + mapcanon unit s' -> + FSetInter s (FSetUnion s' s'') = + FSetUnion (FSetInter s s') (FSetInter s s''). +Proof. + intros. apply (mapcanon_unique unit). unfold FSetInter in |- *. + apply MapDomRestrTo_canon; try assumption. + unfold FSetUnion in |- *. apply MapMerge_canon; unfold FSetInter in |- *; apply MapDomRestrTo_canon; + assumption. + apply FSetInter_Union_r. +Qed.
\ No newline at end of file |