summaryrefslogtreecommitdiff
path: root/theories/IntMap/Map.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Map.v')
-rw-r--r--theories/IntMap/Map.v869
1 files changed, 0 insertions, 869 deletions
diff --git a/theories/IntMap/Map.v b/theories/IntMap/Map.v
deleted file mode 100644
index 2be6de04..00000000
--- a/theories/IntMap/Map.v
+++ /dev/null
@@ -1,869 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Map.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-(** Definition of finite sets as trees indexed by adresses *)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-
-(* The type [ad] of addresses is now [N] in [BinNat]. *)
-
-Definition ad := N.
-
-(* a Notation or complete replacement would be nice,
- but that would changes hyps names *)
-
-Section MapDefs.
-
-(** We now define maps from ad to A. *)
- Variable A : Set.
-
- Inductive Map : Set :=
- | M0 : Map
- | M1 : ad -> A -> Map
- | M2 : Map -> Map -> Map.
-
- Lemma option_sum : forall o:option A, {y : A | o = Some y} + {o = None}.
- Proof.
- simple induction o.
- left. split with a. reflexivity.
- right. reflexivity.
- Qed.
-
- (** The semantics of maps is given by the function [MapGet].
- The semantics of a map [m] is a partial, finite function from
- [ad] to [A]: *)
-
- Fixpoint MapGet (m:Map) : ad -> option A :=
- match m with
- | M0 => fun a:ad => None
- | M1 x y => fun a:ad => if Neqb x a then Some y else None
- | M2 m1 m2 =>
- fun a:ad =>
- match a with
- | N0 => MapGet m1 N0
- | Npos xH => MapGet m2 N0
- | Npos (xO p) => MapGet m1 (Npos p)
- | Npos (xI p) => MapGet m2 (Npos p)
- end
- end.
-
- Definition newMap := M0.
-
- Definition MapSingleton := M1.
-
- Definition eqm (g g':ad -> option A) := forall a:ad, g a = g' a.
-
- Lemma newMap_semantics : eqm (MapGet newMap) (fun a:ad => None).
- Proof.
- simpl in |- *. unfold eqm in |- *. trivial.
- Qed.
-
- Lemma MapSingleton_semantics :
- forall (a:ad) (y:A),
- eqm (MapGet (MapSingleton a y))
- (fun a':ad => if Neqb a a' then Some y else None).
- Proof.
- simpl in |- *. unfold eqm in |- *. trivial.
- Qed.
-
- Lemma M1_semantics_1 : forall (a:ad) (y:A), MapGet (M1 a y) a = Some y.
- Proof.
- unfold MapGet in |- *. intros. rewrite (Neqb_correct a). reflexivity.
- Qed.
-
- Lemma M1_semantics_2 :
- forall (a a':ad) (y:A), Neqb a a' = false -> MapGet (M1 a y) a' = None.
- Proof.
- intros. simpl in |- *. rewrite H. reflexivity.
- Qed.
-
- Lemma Map2_semantics_1 :
- forall m m':Map,
- eqm (MapGet m) (fun a:ad => MapGet (M2 m m') (Ndouble a)).
- Proof.
- unfold eqm in |- *. simple induction a; trivial.
- Qed.
-
- Lemma Map2_semantics_1_eq :
- forall (m m':Map) (f:ad -> option A),
- eqm (MapGet (M2 m m')) f -> eqm (MapGet m) (fun a:ad => f (Ndouble a)).
- Proof.
- unfold eqm in |- *.
- intros.
- rewrite <- (H (Ndouble a)).
- exact (Map2_semantics_1 m m' a).
- Qed.
-
- Lemma Map2_semantics_2 :
- forall m m':Map,
- eqm (MapGet m') (fun a:ad => MapGet (M2 m m') (Ndouble_plus_one a)).
- Proof.
- unfold eqm in |- *. simple induction a; trivial.
- Qed.
-
- Lemma Map2_semantics_2_eq :
- forall (m m':Map) (f:ad -> option A),
- eqm (MapGet (M2 m m')) f ->
- eqm (MapGet m') (fun a:ad => f (Ndouble_plus_one a)).
- Proof.
- unfold eqm in |- *.
- intros.
- rewrite <- (H (Ndouble_plus_one a)).
- exact (Map2_semantics_2 m m' a).
- Qed.
-
- Lemma MapGet_M2_bit_0_0 :
- forall a:ad,
- Nbit0 a = false ->
- forall m m':Map, MapGet (M2 m m') a = MapGet m (Ndiv2 a).
- Proof.
- simple induction a; trivial. simple induction p. intros. discriminate H0.
- trivial.
- intros. discriminate H.
- Qed.
-
- Lemma MapGet_M2_bit_0_1 :
- forall a:ad,
- Nbit0 a = true ->
- forall m m':Map, MapGet (M2 m m') a = MapGet m' (Ndiv2 a).
- Proof.
- simple induction a. intros. discriminate H.
- simple induction p. trivial.
- intros. discriminate H0.
- trivial.
- Qed.
-
- Lemma MapGet_M2_bit_0_if :
- forall (m m':Map) (a:ad),
- MapGet (M2 m m') a =
- (if Nbit0 a then MapGet m' (Ndiv2 a) else MapGet m (Ndiv2 a)).
- Proof.
- intros. elim (sumbool_of_bool (Nbit0 a)). intro H. rewrite H.
- apply MapGet_M2_bit_0_1; assumption.
- intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
- Qed.
-
- Lemma MapGet_M2_bit_0 :
- forall (m m' m'':Map) (a:ad),
- (if Nbit0 a then MapGet (M2 m' m) a else MapGet (M2 m m'') a) =
- MapGet m (Ndiv2 a).
- Proof.
- intros. elim (sumbool_of_bool (Nbit0 a)). intro H. rewrite H.
- apply MapGet_M2_bit_0_1; assumption.
- intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
- Qed.
-
- Lemma Map2_semantics_3 :
- forall m m':Map,
- eqm (MapGet (M2 m m'))
- (fun a:ad =>
- match Nbit0 a with
- | false => MapGet m (Ndiv2 a)
- | true => MapGet m' (Ndiv2 a)
- end).
- Proof.
- unfold eqm in |- *.
- simple induction a; trivial.
- simple induction p; trivial.
- Qed.
-
- Lemma Map2_semantics_3_eq :
- forall (m m':Map) (f f':ad -> option A),
- eqm (MapGet m) f ->
- eqm (MapGet m') f' ->
- eqm (MapGet (M2 m m'))
- (fun a:ad =>
- match Nbit0 a with
- | false => f (Ndiv2 a)
- | true => f' (Ndiv2 a)
- end).
- Proof.
- unfold eqm in |- *.
- intros.
- rewrite <- (H (Ndiv2 a)).
- rewrite <- (H0 (Ndiv2 a)).
- exact (Map2_semantics_3 m m' a).
- Qed.
-
- Fixpoint MapPut1 (a:ad) (y:A) (a':ad) (y':A) (p:positive) {struct p} :
- Map :=
- match p with
- | xO p' =>
- let m := MapPut1 (Ndiv2 a) y (Ndiv2 a') y' p' in
- match Nbit0 a with
- | false => M2 m M0
- | true => M2 M0 m
- end
- | _ =>
- match Nbit0 a with
- | false => M2 (M1 (Ndiv2 a) y) (M1 (Ndiv2 a') y')
- | true => M2 (M1 (Ndiv2 a') y') (M1 (Ndiv2 a) y)
- end
- end.
-
- Lemma MapGet_if_commute :
- forall (b:bool) (m m':Map) (a:ad),
- MapGet (if b then m else m') a = (if b then MapGet m a else MapGet m' a).
- Proof.
- intros. case b; trivial.
- Qed.
-
- (*i
- Lemma MapGet_M2_bit_0_1' : (m,m',m'',m''':Map)
- (a:ad) (MapGet (if (Nbit0 a) then (M2 m m') else (M2 m'' m''')) a)=
- (MapGet (if (Nbit0 a) then m' else m'') (Ndiv2 a)).
- Proof.
- Intros. Rewrite (MapGet_if_commute (Nbit0 a)). Rewrite (MapGet_if_commute (Nbit0 a)).
- Cut (Nbit0 a)=false\/(Nbit0 a)=true. Intros. Elim H. Intros. Rewrite H0.
- Apply MapGet_M2_bit_0_0. Assumption.
- Intros. Rewrite H0. Apply MapGet_M2_bit_0_1. Assumption.
- Case (Nbit0 a); Auto.
- Qed.
- i*)
-
- Lemma MapGet_if_same :
- forall (m:Map) (b:bool) (a:ad), MapGet (if b then m else m) a = MapGet m a.
- Proof.
- simple induction b; trivial.
- Qed.
-
- Lemma MapGet_M2_bit_0_2 :
- forall (m m' m'':Map) (a:ad),
- MapGet (if Nbit0 a then M2 m m' else M2 m' m'') a =
- MapGet m' (Ndiv2 a).
- Proof.
- intros. rewrite MapGet_if_commute. apply MapGet_M2_bit_0.
- Qed.
-
- Lemma MapPut1_semantics_1 :
- forall (p:positive) (a a':ad) (y y':A),
- Nxor a a' = Npos p -> MapGet (MapPut1 a y a' y' p) a = Some y.
- Proof.
- simple induction p. intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
- intros. simpl in |- *. rewrite MapGet_M2_bit_0_2. apply H. rewrite <- Nxor_div2. rewrite H0.
- reflexivity.
- intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
- Qed.
-
- Lemma MapPut1_semantics_2 :
- forall (p:positive) (a a':ad) (y y':A),
- Nxor a a' = Npos p -> MapGet (MapPut1 a y a' y' p) a' = Some y'.
- Proof.
- simple induction p. intros. unfold MapPut1 in |- *. rewrite (Nneg_bit0_2 a a' p0 H0).
- rewrite if_negb. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
- intros. simpl in |- *. rewrite (Nsame_bit0 a a' p0 H0). rewrite MapGet_M2_bit_0_2.
- apply H. rewrite <- Nxor_div2. rewrite H0. reflexivity.
- intros. unfold MapPut1 in |- *. rewrite (Nneg_bit0_1 a a' H). rewrite if_negb.
- rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
- Qed.
-
- Lemma MapGet_M2_both_None :
- forall (m m':Map) (a:ad),
- MapGet m (Ndiv2 a) = None ->
- MapGet m' (Ndiv2 a) = None -> MapGet (M2 m m') a = None.
- Proof.
- intros. rewrite (Map2_semantics_3 m m' a).
- case (Nbit0 a); assumption.
- Qed.
-
- Lemma MapPut1_semantics_3 :
- forall (p:positive) (a a' a0:ad) (y y':A),
- Nxor a a' = Npos p ->
- Neqb a a0 = false ->
- Neqb a' a0 = false -> MapGet (MapPut1 a y a' y' p) a0 = None.
- Proof.
- simple induction p. intros. unfold MapPut1 in |- *. elim (Nneq_elim a a0 H1). intro. rewrite H3. rewrite if_negb.
- rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply Ndiv2_bit_neq. assumption.
- rewrite (Nneg_bit0_2 a a' p0 H0) in H3. rewrite (negb_intro (Nbit0 a')).
- rewrite (negb_intro (Nbit0 a0)). rewrite H3. reflexivity.
- intro. elim (Nneq_elim a' a0 H2). intro. rewrite (Nneg_bit0_2 a a' p0 H0). rewrite H4.
- rewrite (negb_elim (Nbit0 a0)). rewrite MapGet_M2_bit_0_2.
- apply M1_semantics_2; assumption.
- intro; case (Nbit0 a); apply MapGet_M2_both_None; apply M1_semantics_2;
- assumption.
- intros. simpl in |- *. elim (Nneq_elim a a0 H1). intro. rewrite H3. rewrite if_negb.
- rewrite MapGet_M2_bit_0_2. reflexivity.
- intro. elim (Nneq_elim a' a0 H2). intro. rewrite (Nsame_bit0 a a' p0 H0). rewrite H4.
- rewrite if_negb. rewrite MapGet_M2_bit_0_2. reflexivity.
- intro. cut (Nxor (Ndiv2 a) (Ndiv2 a') = Npos p0). intro.
- case (Nbit0 a); apply MapGet_M2_both_None; trivial; apply H;
- assumption.
- rewrite <- Nxor_div2. rewrite H0. reflexivity.
- intros. simpl in |- *. elim (Nneq_elim a a0 H0). intro. rewrite H2. rewrite if_negb.
- rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply Ndiv2_bit_neq. assumption.
- rewrite (Nneg_bit0_1 a a' H) in H2. rewrite (negb_intro (Nbit0 a')).
- rewrite (negb_intro (Nbit0 a0)). rewrite H2. reflexivity.
- intro. elim (Nneq_elim a' a0 H1). intro. rewrite (Nneg_bit0_1 a a' H). rewrite H3.
- rewrite (negb_elim (Nbit0 a0)). rewrite MapGet_M2_bit_0_2.
- apply M1_semantics_2; assumption.
- intro. case (Nbit0 a); apply MapGet_M2_both_None; apply M1_semantics_2;
- assumption.
- Qed.
-
- Lemma MapPut1_semantics :
- forall (p:positive) (a a':ad) (y y':A),
- Nxor a a' = Npos p ->
- eqm (MapGet (MapPut1 a y a' y' p))
- (fun a0:ad =>
- if Neqb a a0
- then Some y
- else if Neqb a' a0 then Some y' else None).
- Proof.
- unfold eqm in |- *. intros. elim (sumbool_of_bool (Neqb a a0)). intro H0. rewrite H0.
- rewrite <- (Neqb_complete _ _ H0). exact (MapPut1_semantics_1 p a a' y y' H).
- intro H0. rewrite H0. elim (sumbool_of_bool (Neqb a' a0)). intro H1.
- rewrite <- (Neqb_complete _ _ H1). rewrite (Neqb_correct a').
- exact (MapPut1_semantics_2 p a a' y y' H).
- intro H1. rewrite H1. exact (MapPut1_semantics_3 p a a' a0 y y' H H0 H1).
- Qed.
-
- Lemma MapPut1_semantics' :
- forall (p:positive) (a a':ad) (y y':A),
- Nxor a a' = Npos p ->
- eqm (MapGet (MapPut1 a y a' y' p))
- (fun a0:ad =>
- if Neqb a' a0
- then Some y'
- else if Neqb a a0 then Some y else None).
- Proof.
- unfold eqm in |- *. intros. rewrite (MapPut1_semantics p a a' y y' H a0).
- elim (sumbool_of_bool (Neqb a a0)). intro H0. rewrite H0.
- rewrite <- (Neqb_complete a a0 H0). rewrite (Neqb_comm a' a).
- rewrite (Nxor_eq_false a a' p H). reflexivity.
- intro H0. rewrite H0. reflexivity.
- Qed.
-
- Fixpoint MapPut (m:Map) : ad -> A -> Map :=
- match m with
- | M0 => M1
- | M1 a y =>
- fun (a':ad) (y':A) =>
- match Nxor a a' with
- | N0 => M1 a' y'
- | Npos p => MapPut1 a y a' y' p
- end
- | M2 m1 m2 =>
- fun (a:ad) (y:A) =>
- match a with
- | N0 => M2 (MapPut m1 N0 y) m2
- | Npos xH => M2 m1 (MapPut m2 N0 y)
- | Npos (xO p) => M2 (MapPut m1 (Npos p) y) m2
- | Npos (xI p) => M2 m1 (MapPut m2 (Npos p) y)
- end
- end.
-
- Lemma MapPut_semantics_1 :
- forall (a:ad) (y:A) (a0:ad),
- MapGet (MapPut M0 a y) a0 = MapGet (M1 a y) a0.
- Proof.
- trivial.
- Qed.
-
- Lemma MapPut_semantics_2_1 :
- forall (a:ad) (y y':A) (a0:ad),
- MapGet (MapPut (M1 a y) a y') a0 =
- (if Neqb a a0 then Some y' else None).
- Proof.
- simpl in |- *. intros. rewrite (Nxor_nilpotent a). trivial.
- Qed.
-
- Lemma MapPut_semantics_2_2 :
- forall (a a':ad) (y y':A) (a0 a'':ad),
- Nxor a a' = a'' ->
- MapGet (MapPut (M1 a y) a' y') a0 =
- (if Neqb a' a0 then Some y' else if Neqb a a0 then Some y else None).
- Proof.
- simple induction a''. intro. rewrite (Nxor_eq _ _ H). rewrite MapPut_semantics_2_1.
- case (Neqb a' a0); trivial.
- intros. simpl in |- *. rewrite H. rewrite (MapPut1_semantics p a a' y y' H a0).
- elim (sumbool_of_bool (Neqb a a0)). intro H0. rewrite H0. rewrite <- (Neqb_complete _ _ H0).
- rewrite (Neqb_comm a' a). rewrite (Nxor_eq_false _ _ _ H). reflexivity.
- intro H0. rewrite H0. reflexivity.
- Qed.
-
- Lemma MapPut_semantics_2 :
- forall (a a':ad) (y y':A) (a0:ad),
- MapGet (MapPut (M1 a y) a' y') a0 =
- (if Neqb a' a0 then Some y' else if Neqb a a0 then Some y else None).
- Proof.
- intros. apply MapPut_semantics_2_2 with (a'' := Nxor a a'); trivial.
- Qed.
-
- Lemma MapPut_semantics_3_1 :
- forall (m m':Map) (a:ad) (y:A),
- MapPut (M2 m m') a y =
- (if Nbit0 a
- then M2 m (MapPut m' (Ndiv2 a) y)
- else M2 (MapPut m (Ndiv2 a) y) m').
- Proof.
- simple induction a. trivial.
- simple induction p; trivial.
- Qed.
-
- Lemma MapPut_semantics :
- forall (m:Map) (a:ad) (y:A),
- eqm (MapGet (MapPut m a y))
- (fun a':ad => if Neqb a a' then Some y else MapGet m a').
- Proof.
- unfold eqm in |- *. simple induction m. exact MapPut_semantics_1.
- intros. unfold MapGet at 2 in |- *. apply MapPut_semantics_2; assumption.
- intros. rewrite MapPut_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a0).
- elim (sumbool_of_bool (Nbit0 a)). intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if.
- elim (sumbool_of_bool (Nbit0 a0)). intro H2. rewrite H2.
- rewrite (H0 (Ndiv2 a) y (Ndiv2 a0)). elim (sumbool_of_bool (Neqb a a0)).
- intro H3. rewrite H3. rewrite (Ndiv2_eq _ _ H3). reflexivity.
- intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (Ndiv2_bit_neq _ _ H3 H1). reflexivity.
- intro H2. rewrite H2. rewrite (Neqb_comm a a0). rewrite (Nbit0_neq a0 a H2 H1).
- reflexivity.
- intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a0)).
- intro H2. rewrite H2. rewrite (Nbit0_neq a a0 H1 H2). reflexivity.
- intro H2. rewrite H2. rewrite (H (Ndiv2 a) y (Ndiv2 a0)).
- elim (sumbool_of_bool (Neqb a a0)). intro H3. rewrite H3.
- rewrite (Ndiv2_eq a a0 H3). reflexivity.
- intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (Ndiv2_bit_neq a a0 H3 H1). reflexivity.
- Qed.
-
- Fixpoint MapPut_behind (m:Map) : ad -> A -> Map :=
- match m with
- | M0 => M1
- | M1 a y =>
- fun (a':ad) (y':A) =>
- match Nxor a a' with
- | N0 => m
- | Npos p => MapPut1 a y a' y' p
- end
- | M2 m1 m2 =>
- fun (a:ad) (y:A) =>
- match a with
- | N0 => M2 (MapPut_behind m1 N0 y) m2
- | Npos xH => M2 m1 (MapPut_behind m2 N0 y)
- | Npos (xO p) => M2 (MapPut_behind m1 (Npos p) y) m2
- | Npos (xI p) => M2 m1 (MapPut_behind m2 (Npos p) y)
- end
- end.
-
- Lemma MapPut_behind_semantics_3_1 :
- forall (m m':Map) (a:ad) (y:A),
- MapPut_behind (M2 m m') a y =
- (if Nbit0 a
- then M2 m (MapPut_behind m' (Ndiv2 a) y)
- else M2 (MapPut_behind m (Ndiv2 a) y) m').
- Proof.
- simple induction a. trivial.
- simple induction p; trivial.
- Qed.
-
- Lemma MapPut_behind_as_before_1 :
- forall a a' a0:ad,
- Neqb a' a0 = false ->
- forall y y':A,
- MapGet (MapPut (M1 a y) a' y') a0 =
- MapGet (MapPut_behind (M1 a y) a' y') a0.
- Proof.
- intros a a' a0. simpl in |- *. intros H y y'. elim (Ndiscr (Nxor a a')). intro H0. elim H0.
- intros p H1. rewrite H1. reflexivity.
- intro H0. rewrite H0. rewrite (Nxor_eq _ _ H0). rewrite (M1_semantics_2 a' a0 y H).
- exact (M1_semantics_2 a' a0 y' H).
- Qed.
-
- Lemma MapPut_behind_as_before :
- forall (m:Map) (a:ad) (y:A) (a0:ad),
- Neqb a a0 = false ->
- MapGet (MapPut m a y) a0 = MapGet (MapPut_behind m a y) a0.
- Proof.
- simple induction m. trivial.
- intros a y a' y' a0 H. exact (MapPut_behind_as_before_1 a a' a0 H y y').
- intros. rewrite MapPut_semantics_3_1. rewrite MapPut_behind_semantics_3_1.
- elim (sumbool_of_bool (Nbit0 a)). intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if.
- rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a0)). intro H3.
- rewrite H3. apply H0. rewrite <- H3 in H2. exact (Ndiv2_bit_neq a a0 H1 H2).
- intro H3. rewrite H3. reflexivity.
- intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
- elim (sumbool_of_bool (Nbit0 a0)). intro H3. rewrite H3. reflexivity.
- intro H3. rewrite H3. apply H. rewrite <- H3 in H2. exact (Ndiv2_bit_neq a a0 H1 H2).
- Qed.
-
- Lemma MapPut_behind_new :
- forall (m:Map) (a:ad) (y:A),
- MapGet (MapPut_behind m a y) a =
- match MapGet m a with
- | Some y' => Some y'
- | _ => Some y
- end.
- Proof.
- simple induction m. simpl in |- *. intros. rewrite (Neqb_correct a). reflexivity.
- intros. elim (Ndiscr (Nxor a a1)). intro H. elim H. intros p H0. simpl in |- *.
- rewrite H0. rewrite (Nxor_eq_false a a1 p). exact (MapPut1_semantics_2 p a a1 a0 y H0).
- assumption.
- intro H. simpl in |- *. rewrite H. rewrite <- (Nxor_eq _ _ H). rewrite (Neqb_correct a).
- exact (M1_semantics_1 a a0).
- intros. rewrite MapPut_behind_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a).
- elim (sumbool_of_bool (Nbit0 a)). intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_1 a H1).
- exact (H0 (Ndiv2 a) y).
- intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_0 a H1). exact (H (Ndiv2 a) y).
- Qed.
-
- Lemma MapPut_behind_semantics :
- forall (m:Map) (a:ad) (y:A),
- eqm (MapGet (MapPut_behind m a y))
- (fun a':ad =>
- match MapGet m a' with
- | Some y' => Some y'
- | _ => if Neqb a a' then Some y else None
- end).
- Proof.
- unfold eqm in |- *. intros. elim (sumbool_of_bool (Neqb a a0)). intro H. rewrite H.
- rewrite (Neqb_complete _ _ H). apply MapPut_behind_new.
- intro H. rewrite H. rewrite <- (MapPut_behind_as_before m a y a0 H).
- rewrite (MapPut_semantics m a y a0). rewrite H. case (MapGet m a0); trivial.
- Qed.
-
- Definition makeM2 (m m':Map) :=
- match m, m' with
- | M0, M0 => M0
- | M0, M1 a y => M1 (Ndouble_plus_one a) y
- | M1 a y, M0 => M1 (Ndouble a) y
- | _, _ => M2 m m'
- end.
-
- Lemma makeM2_M2 :
- forall m m':Map, eqm (MapGet (makeM2 m m')) (MapGet (M2 m m')).
- Proof.
- unfold eqm in |- *. intros. elim (sumbool_of_bool (Nbit0 a)). intro H.
- rewrite (MapGet_M2_bit_0_1 a H m m'). case m'. case m. reflexivity.
- intros a0 y. simpl in |- *. rewrite (Nodd_not_double a H a0). reflexivity.
- intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
- assumption.
- case m. intros a0 y. simpl in |- *. elim (sumbool_of_bool (Neqb a0 (Ndiv2 a))).
- intro H0. rewrite H0. rewrite (Neqb_complete _ _ H0). rewrite (Ndiv2_double_plus_one a H).
- rewrite (Neqb_correct a). reflexivity.
- intro H0. rewrite H0. rewrite (Neqb_comm a0 (Ndiv2 a)) in H0.
- rewrite (Nnot_div2_not_double_plus_one a a0 H0). reflexivity.
- intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
- assumption.
- intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
- assumption.
- intros m1 m2. unfold makeM2 in |- *.
- cut (MapGet (M2 m (M2 m1 m2)) a = MapGet (M2 m1 m2) (Ndiv2 a)).
- case m; trivial.
- exact (MapGet_M2_bit_0_1 a H m (M2 m1 m2)).
- intro H. rewrite (MapGet_M2_bit_0_0 a H m m'). case m. case m'. reflexivity.
- intros a0 y. simpl in |- *. rewrite (Neven_not_double_plus_one a H a0). reflexivity.
- intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
- assumption.
- case m'. intros a0 y. simpl in |- *. elim (sumbool_of_bool (Neqb a0 (Ndiv2 a))). intro H0.
- rewrite H0. rewrite (Neqb_complete _ _ H0). rewrite (Ndiv2_double a H).
- rewrite (Neqb_correct a). reflexivity.
- intro H0. rewrite H0. rewrite (Neqb_comm (Ndouble a0) a).
- rewrite (Neqb_comm a0 (Ndiv2 a)) in H0. rewrite (Nnot_div2_not_double a a0 H0).
- reflexivity.
- intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
- assumption.
- intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
- assumption.
- intros m1 m2. unfold makeM2 in |- *. exact (MapGet_M2_bit_0_0 a H (M2 m1 m2) m').
- Qed.
-
- Fixpoint MapRemove (m:Map) : ad -> Map :=
- match m with
- | M0 => fun _:ad => M0
- | M1 a y =>
- fun a':ad => match Neqb a a' with
- | true => M0
- | false => m
- end
- | M2 m1 m2 =>
- fun a:ad =>
- if Nbit0 a
- then makeM2 m1 (MapRemove m2 (Ndiv2 a))
- else makeM2 (MapRemove m1 (Ndiv2 a)) m2
- end.
-
- Lemma MapRemove_semantics :
- forall (m:Map) (a:ad),
- eqm (MapGet (MapRemove m a))
- (fun a':ad => if Neqb a a' then None else MapGet m a').
- Proof.
- unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (Neqb a a0); trivial.
- intros. simpl in |- *. elim (sumbool_of_bool (Neqb a1 a2)). intro H. rewrite H.
- elim (sumbool_of_bool (Neqb a a1)). intro H0. rewrite H0. reflexivity.
- intro H0. rewrite H0. rewrite (Neqb_complete _ _ H) in H0. exact (M1_semantics_2 a a2 a0 H0).
- intro H. elim (sumbool_of_bool (Neqb a a1)). intro H0. rewrite H0. rewrite H.
- rewrite <- (Neqb_complete _ _ H0) in H. rewrite H. reflexivity.
- intro H0. rewrite H0. rewrite H. reflexivity.
- intros. change
- (MapGet
- (if Nbit0 a
- then makeM2 m0 (MapRemove m1 (Ndiv2 a))
- else makeM2 (MapRemove m0 (Ndiv2 a)) m1) a0 =
- (if Neqb a a0 then None else MapGet (M2 m0 m1) a0))
- in |- *.
- elim (sumbool_of_bool (Nbit0 a)). intro H1. rewrite H1.
- rewrite (makeM2_M2 m0 (MapRemove m1 (Ndiv2 a)) a0). elim (sumbool_of_bool (Nbit0 a0)).
- intro H2. rewrite MapGet_M2_bit_0_1. rewrite (H0 (Ndiv2 a) (Ndiv2 a0)).
- elim (sumbool_of_bool (Neqb a a0)). intro H3. rewrite H3. rewrite (Ndiv2_eq _ _ H3).
- reflexivity.
- intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (Ndiv2_bit_neq _ _ H3 H1).
- rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). reflexivity.
- assumption.
- intro H2. rewrite (MapGet_M2_bit_0_0 a0 H2 m0 (MapRemove m1 (Ndiv2 a))).
- rewrite (Neqb_comm a a0). rewrite (Nbit0_neq _ _ H2 H1).
- rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). reflexivity.
- intro H1. rewrite H1. rewrite (makeM2_M2 (MapRemove m0 (Ndiv2 a)) m1 a0).
- elim (sumbool_of_bool (Nbit0 a0)). intro H2. rewrite MapGet_M2_bit_0_1.
- rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). rewrite (Nbit0_neq a a0 H1 H2). reflexivity.
- assumption.
- intro H2. rewrite MapGet_M2_bit_0_0. rewrite (H (Ndiv2 a) (Ndiv2 a0)).
- rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). elim (sumbool_of_bool (Neqb a a0)). intro H3.
- rewrite H3. rewrite (Ndiv2_eq _ _ H3). reflexivity.
- intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (Ndiv2_bit_neq _ _ H3 H1). reflexivity.
- assumption.
- Qed.
-
- Fixpoint MapCard (m:Map) : nat :=
- match m with
- | M0 => 0
- | M1 _ _ => 1
- | M2 m m' => MapCard m + MapCard m'
- end.
-
- Fixpoint MapMerge (m:Map) : Map -> Map :=
- match m with
- | M0 => fun m':Map => m'
- | M1 a y => fun m':Map => MapPut_behind m' a y
- | M2 m1 m2 =>
- fun m':Map =>
- match m' with
- | M0 => m
- | M1 a' y' => MapPut m a' y'
- | M2 m'1 m'2 => M2 (MapMerge m1 m'1) (MapMerge m2 m'2)
- end
- end.
-
- Lemma MapMerge_semantics :
- forall m m':Map,
- eqm (MapGet (MapMerge m m'))
- (fun a0:ad =>
- match MapGet m' a0 with
- | Some y' => Some y'
- | None => MapGet m a0
- end).
- Proof.
- unfold eqm in |- *. simple induction m. intros. simpl in |- *. case (MapGet m' a); trivial.
- intros. simpl in |- *. rewrite (MapPut_behind_semantics m' a a0 a1). reflexivity.
- simple induction m'. trivial.
- intros. unfold MapMerge in |- *. rewrite (MapPut_semantics (M2 m0 m1) a a0 a1).
- elim (sumbool_of_bool (Neqb a a1)). intro H1. rewrite H1. rewrite (Neqb_complete _ _ H1).
- rewrite (M1_semantics_1 a1 a0). reflexivity.
- intro H1. rewrite H1. rewrite (M1_semantics_2 a a1 a0 H1). reflexivity.
- intros. cut (MapMerge (M2 m0 m1) (M2 m2 m3) = M2 (MapMerge m0 m2) (MapMerge m1 m3)).
- intro. rewrite H3. rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (Ndiv2 a)).
- rewrite (H m2 (Ndiv2 a)). rewrite (MapGet_M2_bit_0_if m2 m3 a).
- rewrite (MapGet_M2_bit_0_if m0 m1 a). case (Nbit0 a); trivial.
- reflexivity.
- Qed.
-
- (** [MapInter], [MapRngRestrTo], [MapRngRestrBy], [MapInverse]
- not implemented: need a decidable equality on [A]. *)
-
- Fixpoint MapDelta (m:Map) : Map -> Map :=
- match m with
- | M0 => fun m':Map => m'
- | M1 a y =>
- fun m':Map =>
- match MapGet m' a with
- | None => MapPut m' a y
- | _ => MapRemove m' a
- end
- | M2 m1 m2 =>
- fun m':Map =>
- match m' with
- | M0 => m
- | M1 a' y' =>
- match MapGet m a' with
- | None => MapPut m a' y'
- | _ => MapRemove m a'
- end
- | M2 m'1 m'2 => makeM2 (MapDelta m1 m'1) (MapDelta m2 m'2)
- end
- end.
-
- Lemma MapDelta_semantics_comm :
- forall m m':Map, eqm (MapGet (MapDelta m m')) (MapGet (MapDelta m' m)).
- Proof.
- unfold eqm in |- *. simple induction m. simple induction m'; reflexivity.
- simple induction m'. reflexivity.
- unfold MapDelta in |- *. intros. elim (sumbool_of_bool (Neqb a a1)). intro H.
- rewrite <- (Neqb_complete _ _ H). rewrite (M1_semantics_1 a a2).
- rewrite (M1_semantics_1 a a0). simpl in |- *. rewrite (Neqb_correct a). reflexivity.
- intro H. rewrite (M1_semantics_2 a a1 a0 H). rewrite (Neqb_comm a a1) in H.
- rewrite (M1_semantics_2 a1 a a2 H). rewrite (MapPut_semantics (M1 a a0) a1 a2 a3).
- rewrite (MapPut_semantics (M1 a1 a2) a a0 a3). elim (sumbool_of_bool (Neqb a a3)).
- intro H0. rewrite H0. rewrite (Neqb_complete _ _ H0) in H. rewrite H.
- rewrite (Neqb_complete _ _ H0). rewrite (M1_semantics_1 a3 a0). reflexivity.
- intro H0. rewrite H0. rewrite (M1_semantics_2 a a3 a0 H0).
- elim (sumbool_of_bool (Neqb a1 a3)). intro H1. rewrite H1.
- rewrite (Neqb_complete _ _ H1). exact (M1_semantics_1 a3 a2).
- intro H1. rewrite H1. exact (M1_semantics_2 a1 a3 a2 H1).
- intros. reflexivity.
- simple induction m'. reflexivity.
- reflexivity.
- intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite (makeM2_M2 (MapDelta m2 m0) (MapDelta m3 m1) a).
- rewrite (MapGet_M2_bit_0_if (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite (MapGet_M2_bit_0_if (MapDelta m2 m0) (MapDelta m3 m1) a).
- rewrite (H0 m3 (Ndiv2 a)). rewrite (H m2 (Ndiv2 a)). reflexivity.
- Qed.
-
- Lemma MapDelta_semantics_1_1 :
- forall (a:ad) (y:A) (m':Map) (a0:ad),
- MapGet (M1 a y) a0 = None ->
- MapGet m' a0 = None -> MapGet (MapDelta (M1 a y) m') a0 = None.
- Proof.
- intros. unfold MapDelta in |- *. elim (sumbool_of_bool (Neqb a a0)). intro H1.
- rewrite (Neqb_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
- intro H1. case (MapGet m' a).
- rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
- rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
- Qed.
-
- Lemma MapDelta_semantics_1 :
- forall (m m':Map) (a:ad),
- MapGet m a = None ->
- MapGet m' a = None -> MapGet (MapDelta m m') a = None.
- Proof.
- simple induction m. trivial.
- exact MapDelta_semantics_1_1.
- simple induction m'. trivial.
- intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- apply MapDelta_semantics_1_1; trivial.
- intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a)). intro H5. rewrite H5.
- apply H0. rewrite (MapGet_M2_bit_0_1 a H5 m0 m1) in H3. exact H3.
- rewrite (MapGet_M2_bit_0_1 a H5 m2 m3) in H4. exact H4.
- intro H5. rewrite H5. apply H. rewrite (MapGet_M2_bit_0_0 a H5 m0 m1) in H3. exact H3.
- rewrite (MapGet_M2_bit_0_0 a H5 m2 m3) in H4. exact H4.
- Qed.
-
- Lemma MapDelta_semantics_2_1 :
- forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
- MapGet (M1 a y) a0 = None ->
- MapGet m' a0 = Some y0 -> MapGet (MapDelta (M1 a y) m') a0 = Some y0.
- Proof.
- intros. unfold MapDelta in |- *. elim (sumbool_of_bool (Neqb a a0)). intro H1.
- rewrite (Neqb_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
- intro H1. case (MapGet m' a).
- rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
- rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
- Qed.
-
- Lemma MapDelta_semantics_2_2 :
- forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
- MapGet (M1 a y) a0 = Some y0 ->
- MapGet m' a0 = None -> MapGet (MapDelta (M1 a y) m') a0 = Some y0.
- Proof.
- intros. unfold MapDelta in |- *. elim (sumbool_of_bool (Neqb a a0)). intro H1.
- rewrite (Neqb_complete _ _ H1) in H. rewrite (Neqb_complete _ _ H1).
- rewrite H0. rewrite (MapPut_semantics m' a0 y a0). rewrite (Neqb_correct a0).
- rewrite (M1_semantics_1 a0 y) in H. simple inversion H. assumption.
- intro H1. rewrite (M1_semantics_2 a a0 y H1) in H. discriminate H.
- Qed.
-
- Lemma MapDelta_semantics_2 :
- forall (m m':Map) (a:ad) (y:A),
- MapGet m a = None ->
- MapGet m' a = Some y -> MapGet (MapDelta m m') a = Some y.
- Proof.
- simple induction m. trivial.
- exact MapDelta_semantics_2_1.
- simple induction m'. intros. discriminate H2.
- intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- apply MapDelta_semantics_2_2; assumption.
- intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a)). intro H5. rewrite H5.
- apply H0. rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
- rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
- intro H5. rewrite H5. apply H. rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
- rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
- Qed.
-
- Lemma MapDelta_semantics_3_1 :
- forall (a0:ad) (y0:A) (m':Map) (a:ad) (y y':A),
- MapGet (M1 a0 y0) a = Some y ->
- MapGet m' a = Some y' -> MapGet (MapDelta (M1 a0 y0) m') a = None.
- Proof.
- intros. unfold MapDelta in |- *. elim (sumbool_of_bool (Neqb a0 a)). intro H1.
- rewrite (Neqb_complete a0 a H1). rewrite H0. rewrite (MapRemove_semantics m' a a).
- rewrite (Neqb_correct a). reflexivity.
- intro H1. rewrite (M1_semantics_2 a0 a y0 H1) in H. discriminate H.
- Qed.
-
- Lemma MapDelta_semantics_3 :
- forall (m m':Map) (a:ad) (y y':A),
- MapGet m a = Some y ->
- MapGet m' a = Some y' -> MapGet (MapDelta m m') a = None.
- Proof.
- simple induction m. intros. discriminate H.
- exact MapDelta_semantics_3_1.
- simple induction m'. intros. discriminate H2.
- intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- exact (MapDelta_semantics_3_1 a a0 (M2 m0 m1) a1 y' y H2 H1).
- intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a)). intro H5. rewrite H5.
- apply (H0 m3 (Ndiv2 a) y y'). rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
- rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
- intro H5. rewrite H5. apply (H m2 (Ndiv2 a) y y').
- rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
- rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
- Qed.
-
- Lemma MapDelta_semantics :
- forall m m':Map,
- eqm (MapGet (MapDelta m m'))
- (fun a0:ad =>
- match MapGet m a0, MapGet m' a0 with
- | None, Some y' => Some y'
- | Some y, None => Some y
- | _, _ => None
- end).
- Proof.
- unfold eqm in |- *. intros. elim (option_sum (MapGet m' a)). intro H. elim H. intros a0 H0.
- rewrite H0. elim (option_sum (MapGet m a)). intro H1. elim H1. intros a1 H2. rewrite H2.
- exact (MapDelta_semantics_3 m m' a a1 a0 H2 H0).
- intro H1. rewrite H1. exact (MapDelta_semantics_2 m m' a a0 H1 H0).
- intro H. rewrite H. elim (option_sum (MapGet m a)). intro H0. elim H0. intros a0 H1.
- rewrite H1. rewrite (MapDelta_semantics_comm m m' a).
- exact (MapDelta_semantics_2 m' m a a0 H H1).
- intro H0. rewrite H0. exact (MapDelta_semantics_1 m m' a H0 H).
- Qed.
-
- Definition MapEmptyp (m:Map) := match m with
- | M0 => true
- | _ => false
- end.
-
- Lemma MapEmptyp_correct : MapEmptyp M0 = true.
- Proof.
- reflexivity.
- Qed.
-
- Lemma MapEmptyp_complete : forall m:Map, MapEmptyp m = true -> m = M0.
- Proof.
- simple induction m; trivial. intros. discriminate H.
- intros. discriminate H1.
- Qed.
-
- (** [MapSplit] not implemented: not the preferred way of recursing over Maps
- (use [MapSweep], [MapCollect], or [MapFold] in Mapiter.v. *)
-
-End MapDefs. \ No newline at end of file