diff options
Diffstat (limited to 'theories/IntMap/Fset.v')
-rw-r--r-- | theories/IntMap/Fset.v | 371 |
1 files changed, 0 insertions, 371 deletions
diff --git a/theories/IntMap/Fset.v b/theories/IntMap/Fset.v deleted file mode 100644 index 5b46c969..00000000 --- a/theories/IntMap/Fset.v +++ /dev/null @@ -1,371 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(*i $Id: Fset.v 8733 2006-04-25 22:52:18Z letouzey $ i*) - -(*s Sets operations on maps *) - -Require Import Bool. -Require Import Sumbool. -Require Import NArith. -Require Import Ndigits. -Require Import Ndec. -Require Import Map. - -Section Dom. - - Variables A B : Set. - - Fixpoint MapDomRestrTo (m:Map A) : Map B -> Map A := - match m with - | M0 => fun _:Map B => M0 A - | M1 a y => - fun m':Map B => match MapGet B m' a with - | None => M0 A - | _ => m - end - | M2 m1 m2 => - fun m':Map B => - match m' with - | M0 => M0 A - | M1 a' y' => - match MapGet A m a' with - | None => M0 A - | Some y => M1 A a' y - end - | M2 m'1 m'2 => - makeM2 A (MapDomRestrTo m1 m'1) (MapDomRestrTo m2 m'2) - end - end. - - Lemma MapDomRestrTo_semantics : - forall (m:Map A) (m':Map B), - eqm A (MapGet A (MapDomRestrTo m m')) - (fun a0:ad => - match MapGet B m' a0 with - | None => None - | _ => MapGet A m a0 - end). - Proof. - unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial. - intros. simpl in |- *. elim (sumbool_of_bool (Neqb a a1)). intro H. rewrite H. - rewrite <- (Neqb_complete _ _ H). case (MapGet B m' a); try reflexivity. - intro. apply M1_semantics_1. - intro H. rewrite H. case (MapGet B m' a). - case (MapGet B m' a1); intros; exact (M1_semantics_2 A a a1 a0 H). - case (MapGet B m' a1); reflexivity. - simple induction m'. trivial. - unfold MapDomRestrTo in |- *. intros. elim (sumbool_of_bool (Neqb a a1)). - intro H1. - rewrite (Neqb_complete _ _ H1). rewrite (M1_semantics_1 B a1 a0). - case (MapGet A (M2 A m0 m1) a1); try reflexivity. - intro. apply M1_semantics_1. - intro H1. rewrite (M1_semantics_2 B a a1 a0 H1). case (MapGet A (M2 A m0 m1) a); try reflexivity. - intro. exact (M1_semantics_2 A a a1 a2 H1). - intros. change - (MapGet A (makeM2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3)) a = - match MapGet B (M2 B m2 m3) a with - | None => None - | Some _ => MapGet A (M2 A m0 m1) a - end) in |- *. - rewrite (makeM2_M2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3) a). - rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (Ndiv2 a)). rewrite (H m2 (Ndiv2 a)). - rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a). - case (Nbit0 a); reflexivity. - Qed. - - Fixpoint MapDomRestrBy (m:Map A) : Map B -> Map A := - match m with - | M0 => fun _:Map B => M0 A - | M1 a y => - fun m':Map B => match MapGet B m' a with - | None => m - | _ => M0 A - end - | M2 m1 m2 => - fun m':Map B => - match m' with - | M0 => m - | M1 a' y' => MapRemove A m a' - | M2 m'1 m'2 => - makeM2 A (MapDomRestrBy m1 m'1) (MapDomRestrBy m2 m'2) - end - end. - - Lemma MapDomRestrBy_semantics : - forall (m:Map A) (m':Map B), - eqm A (MapGet A (MapDomRestrBy m m')) - (fun a0:ad => - match MapGet B m' a0 with - | None => MapGet A m a0 - | _ => None - end). - Proof. - unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial. - intros. simpl in |- *. elim (sumbool_of_bool (Neqb a a1)). intro H. rewrite H. - rewrite (Neqb_complete _ _ H). case (MapGet B m' a1). trivial. - apply M1_semantics_1. - intro H. rewrite H. case (MapGet B m' a). - case (MapGet B m' a1); trivial. - rewrite (M1_semantics_2 A a a1 a0 H). - case (MapGet B m' a1); trivial. - simple induction m'. trivial. - unfold MapDomRestrBy in |- *. intros. rewrite (MapRemove_semantics A (M2 A m0 m1) a a1). - elim (sumbool_of_bool (Neqb a a1)). intro H1. rewrite H1. rewrite (Neqb_complete _ _ H1). - rewrite (M1_semantics_1 B a1 a0). reflexivity. - intro H1. rewrite H1. rewrite (M1_semantics_2 B a a1 a0 H1). reflexivity. - intros. change - (MapGet A (makeM2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3)) a = - match MapGet B (M2 B m2 m3) a with - | None => MapGet A (M2 A m0 m1) a - | Some _ => None - end) in |- *. - rewrite (makeM2_M2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3) a). - rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (Ndiv2 a)). rewrite (H m2 (Ndiv2 a)). - rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a). - case (Nbit0 a); reflexivity. - Qed. - - Definition in_dom (a:ad) (m:Map A) := - match MapGet A m a with - | None => false - | _ => true - end. - - Lemma in_dom_M0 : forall a:ad, in_dom a (M0 A) = false. - Proof. - trivial. - Qed. - - Lemma in_dom_M1 : forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = Neqb a a0. - Proof. - unfold in_dom in |- *. intros. simpl in |- *. case (Neqb a a0); reflexivity. - Qed. - - Lemma in_dom_M1_1 : forall (a:ad) (y:A), in_dom a (M1 A a y) = true. - Proof. - intros. rewrite in_dom_M1. apply Neqb_correct. - Qed. - - Lemma in_dom_M1_2 : - forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = true -> a = a0. - Proof. - intros. apply (Neqb_complete a a0). rewrite (in_dom_M1 a a0 y) in H. assumption. - Qed. - - Lemma in_dom_some : - forall (m:Map A) (a:ad), - in_dom a m = true -> {y : A | MapGet A m a = Some y}. - Proof. - unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). trivial. - intro H0. rewrite H0 in H. discriminate H. - Qed. - - Lemma in_dom_none : - forall (m:Map A) (a:ad), in_dom a m = false -> MapGet A m a = None. - Proof. - unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). intro H0. elim H0. - intros y H1. rewrite H1 in H. discriminate H. - trivial. - Qed. - - Lemma in_dom_put : - forall (m:Map A) (a0:ad) (y0:A) (a:ad), - in_dom a (MapPut A m a0 y0) = orb (Neqb a a0) (in_dom a m). - Proof. - unfold in_dom in |- *. intros. rewrite (MapPut_semantics A m a0 y0 a). - elim (sumbool_of_bool (Neqb a a0)). intro H. rewrite H. rewrite (Neqb_comm a a0) in H. - rewrite H. rewrite orb_true_b. reflexivity. - intro H. rewrite H. rewrite (Neqb_comm a a0) in H. rewrite H. rewrite orb_false_b. - reflexivity. - Qed. - - Lemma in_dom_put_behind : - forall (m:Map A) (a0:ad) (y0:A) (a:ad), - in_dom a (MapPut_behind A m a0 y0) = orb (Neqb a a0) (in_dom a m). - Proof. - unfold in_dom in |- *. intros. rewrite (MapPut_behind_semantics A m a0 y0 a). - elim (sumbool_of_bool (Neqb a a0)). intro H. rewrite H. rewrite (Neqb_comm a a0) in H. - rewrite H. case (MapGet A m a); reflexivity. - intro H. rewrite H. rewrite (Neqb_comm a a0) in H. rewrite H. case (MapGet A m a); trivial. - Qed. - - Lemma in_dom_remove : - forall (m:Map A) (a0 a:ad), - in_dom a (MapRemove A m a0) = andb (negb (Neqb a a0)) (in_dom a m). - Proof. - unfold in_dom in |- *. intros. rewrite (MapRemove_semantics A m a0 a). - elim (sumbool_of_bool (Neqb a a0)). intro H. rewrite H. rewrite (Neqb_comm a a0) in H. - rewrite H. reflexivity. - intro H. rewrite H. rewrite (Neqb_comm a a0) in H. rewrite H. - case (MapGet A m a); reflexivity. - Qed. - - Lemma in_dom_merge : - forall (m m':Map A) (a:ad), - in_dom a (MapMerge A m m') = orb (in_dom a m) (in_dom a m'). - Proof. - unfold in_dom in |- *. intros. rewrite (MapMerge_semantics A m m' a). - elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0. - case (MapGet A m a); reflexivity. - intro H. rewrite H. rewrite orb_b_false. reflexivity. - Qed. - - Lemma in_dom_delta : - forall (m m':Map A) (a:ad), - in_dom a (MapDelta A m m') = xorb (in_dom a m) (in_dom a m'). - Proof. - unfold in_dom in |- *. intros. rewrite (MapDelta_semantics A m m' a). - elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0. - case (MapGet A m a); reflexivity. - intro H. rewrite H. case (MapGet A m a); reflexivity. - Qed. - -End Dom. - -Section InDom. - - Variables A B : Set. - - Lemma in_dom_restrto : - forall (m:Map A) (m':Map B) (a:ad), - in_dom A a (MapDomRestrTo A B m m') = - andb (in_dom A a m) (in_dom B a m'). - Proof. - unfold in_dom in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a). - elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0. - rewrite andb_b_true. reflexivity. - intro H. rewrite H. rewrite andb_b_false. reflexivity. - Qed. - - Lemma in_dom_restrby : - forall (m:Map A) (m':Map B) (a:ad), - in_dom A a (MapDomRestrBy A B m m') = - andb (in_dom A a m) (negb (in_dom B a m')). - Proof. - unfold in_dom in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a). - elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0. - unfold negb in |- *. rewrite andb_b_false. reflexivity. - intro H. rewrite H. unfold negb in |- *. rewrite andb_b_true. reflexivity. - Qed. - -End InDom. - -Definition FSet := Map unit. - -Section FSetDefs. - - Variable A : Set. - - Definition in_FSet : ad -> FSet -> bool := in_dom unit. - - Fixpoint MapDom (m:Map A) : FSet := - match m with - | M0 => M0 unit - | M1 a _ => M1 unit a tt - | M2 m m' => M2 unit (MapDom m) (MapDom m') - end. - - Lemma MapDom_semantics_1 : - forall (m:Map A) (a:ad) (y:A), - MapGet A m a = Some y -> in_FSet a (MapDom m) = true. - Proof. - simple induction m. intros. discriminate H. - unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0 y0. - case (Neqb a a0). trivial. - intro. discriminate H. - intros m0 H m1 H0 a y. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *. - unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a). - case (Nbit0 a). unfold in_FSet, in_dom in H0. intro. apply H0 with (y := y). assumption. - unfold in_FSet, in_dom in H. intro. apply H with (y := y). assumption. - Qed. - - Lemma MapDom_semantics_2 : - forall (m:Map A) (a:ad), - in_FSet a (MapDom m) = true -> {y : A | MapGet A m a = Some y}. - Proof. - simple induction m. intros. discriminate H. - unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0. case (Neqb a a0). - intro. split with y. reflexivity. - intro. discriminate H. - intros m0 H m1 H0 a. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *. - unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a). - case (Nbit0 a). unfold in_FSet, in_dom in H0. intro. apply H0. assumption. - unfold in_FSet, in_dom in H. intro. apply H. assumption. - Qed. - - Lemma MapDom_semantics_3 : - forall (m:Map A) (a:ad), - MapGet A m a = None -> in_FSet a (MapDom m) = false. - Proof. - intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H0. - elim (MapDom_semantics_2 m a H0). intros y H1. rewrite H in H1. discriminate H1. - trivial. - Qed. - - Lemma MapDom_semantics_4 : - forall (m:Map A) (a:ad), - in_FSet a (MapDom m) = false -> MapGet A m a = None. - Proof. - intros. elim (option_sum A (MapGet A m a)). intro H0. elim H0. intros y H1. - rewrite (MapDom_semantics_1 m a y H1) in H. discriminate H. - trivial. - Qed. - - Lemma MapDom_Dom : - forall (m:Map A) (a:ad), in_dom A a m = in_FSet a (MapDom m). - Proof. - intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H. - elim (MapDom_semantics_2 m a H). intros y H0. rewrite H. unfold in_dom in |- *. rewrite H0. - reflexivity. - intro H. rewrite H. unfold in_dom in |- *. rewrite (MapDom_semantics_4 m a H). reflexivity. - Qed. - - Definition FSetUnion (s s':FSet) : FSet := MapMerge unit s s'. - - Lemma in_FSet_union : - forall (s s':FSet) (a:ad), - in_FSet a (FSetUnion s s') = orb (in_FSet a s) (in_FSet a s'). - Proof. - exact (in_dom_merge unit). - Qed. - - Definition FSetInter (s s':FSet) : FSet := MapDomRestrTo unit unit s s'. - - Lemma in_FSet_inter : - forall (s s':FSet) (a:ad), - in_FSet a (FSetInter s s') = andb (in_FSet a s) (in_FSet a s'). - Proof. - exact (in_dom_restrto unit unit). - Qed. - - Definition FSetDiff (s s':FSet) : FSet := MapDomRestrBy unit unit s s'. - - Lemma in_FSet_diff : - forall (s s':FSet) (a:ad), - in_FSet a (FSetDiff s s') = andb (in_FSet a s) (negb (in_FSet a s')). - Proof. - exact (in_dom_restrby unit unit). - Qed. - - Definition FSetDelta (s s':FSet) : FSet := MapDelta unit s s'. - - Lemma in_FSet_delta : - forall (s s':FSet) (a:ad), - in_FSet a (FSetDelta s s') = xorb (in_FSet a s) (in_FSet a s'). - Proof. - exact (in_dom_delta unit). - Qed. - -End FSetDefs. - -Lemma FSet_Dom : forall s:FSet, MapDom unit s = s. -Proof. - simple induction s. trivial. - simpl in |- *. intros a t. elim t. reflexivity. - intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. -Qed.
\ No newline at end of file |