summaryrefslogtreecommitdiff
path: root/theories/IntMap/Adist.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Adist.v')
-rw-r--r--theories/IntMap/Adist.v336
1 files changed, 336 insertions, 0 deletions
diff --git a/theories/IntMap/Adist.v b/theories/IntMap/Adist.v
new file mode 100644
index 00000000..cdb4c885
--- /dev/null
+++ b/theories/IntMap/Adist.v
@@ -0,0 +1,336 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Adist.v,v 1.9.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Arith.
+Require Import Min.
+Require Import Addr.
+
+Fixpoint ad_plength_1 (p:positive) : nat :=
+ match p with
+ | xH => 0
+ | xI _ => 0
+ | xO p' => S (ad_plength_1 p')
+ end.
+
+Inductive natinf : Set :=
+ | infty : natinf
+ | ni : nat -> natinf.
+
+Definition ad_plength (a:ad) :=
+ match a with
+ | ad_z => infty
+ | ad_x p => ni (ad_plength_1 p)
+ end.
+
+Lemma ad_plength_infty : forall a:ad, ad_plength a = infty -> a = ad_z.
+Proof.
+ simple induction a; trivial.
+ unfold ad_plength in |- *; intros; discriminate H.
+Qed.
+
+Lemma ad_plength_zeros :
+ forall (a:ad) (n:nat),
+ ad_plength a = ni n -> forall k:nat, k < n -> ad_bit a k = false.
+Proof.
+ simple induction a; trivial.
+ simple induction p. simple induction n. intros. inversion H1.
+ simple induction k. simpl in H1. discriminate H1.
+ intros. simpl in H1. discriminate H1.
+ simple induction k. trivial.
+ generalize H0. case n. intros. inversion H3.
+ intros. simpl in |- *. unfold ad_bit in H. apply (H n0). simpl in H1. inversion H1. reflexivity.
+ exact (lt_S_n n1 n0 H3).
+ simpl in |- *. intros n H. inversion H. intros. inversion H0.
+Qed.
+
+Lemma ad_plength_one :
+ forall (a:ad) (n:nat), ad_plength a = ni n -> ad_bit a n = true.
+Proof.
+ simple induction a. intros. inversion H.
+ simple induction p. intros. simpl in H0. inversion H0. reflexivity.
+ intros. simpl in H0. inversion H0. simpl in |- *. unfold ad_bit in H. apply H. reflexivity.
+ intros. simpl in H. inversion H. reflexivity.
+Qed.
+
+Lemma ad_plength_first_one :
+ forall (a:ad) (n:nat),
+ (forall k:nat, k < n -> ad_bit a k = false) ->
+ ad_bit a n = true -> ad_plength a = ni n.
+Proof.
+ simple induction a. intros. simpl in H0. discriminate H0.
+ simple induction p. intros. generalize H0. case n. intros. reflexivity.
+ intros. absurd (ad_bit (ad_x (xI p0)) 0 = false). trivial with bool.
+ auto with bool arith.
+ intros. generalize H0 H1. case n. intros. simpl in H3. discriminate H3.
+ intros. simpl in |- *. unfold ad_plength in H.
+ cut (ni (ad_plength_1 p0) = ni n0). intro. inversion H4. reflexivity.
+ apply H. intros. change (ad_bit (ad_x (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4.
+ exact H3.
+ intro. case n. trivial.
+ intros. simpl in H0. discriminate H0.
+Qed.
+
+Definition ni_min (d d':natinf) :=
+ match d with
+ | infty => d'
+ | ni n => match d' with
+ | infty => d
+ | ni n' => ni (min n n')
+ end
+ end.
+
+Lemma ni_min_idemp : forall d:natinf, ni_min d d = d.
+Proof.
+ simple induction d; trivial.
+ unfold ni_min in |- *.
+ simple induction n; trivial.
+ intros.
+ simpl in |- *.
+ inversion H.
+ rewrite H1.
+ rewrite H1.
+ reflexivity.
+Qed.
+
+Lemma ni_min_comm : forall d d':natinf, ni_min d d' = ni_min d' d.
+Proof.
+ simple induction d. simple induction d'; trivial.
+ simple induction d'; trivial. elim n. simple induction n0; trivial.
+ intros. elim n1; trivial. intros. unfold ni_min in H. cut (min n0 n2 = min n2 n0).
+ intro. unfold ni_min in |- *. simpl in |- *. rewrite H1. reflexivity.
+ cut (ni (min n0 n2) = ni (min n2 n0)). intros.
+ inversion H1; trivial.
+ exact (H n2).
+Qed.
+
+Lemma ni_min_assoc :
+ forall d d' d'':natinf, ni_min (ni_min d d') d'' = ni_min d (ni_min d' d'').
+Proof.
+ simple induction d; trivial. simple induction d'; trivial.
+ simple induction d''; trivial.
+ unfold ni_min in |- *. intro. cut (min (min n n0) n1 = min n (min n0 n1)).
+ intro. rewrite H. reflexivity.
+ generalize n0 n1. elim n; trivial.
+ simple induction n3; trivial. simple induction n5; trivial.
+ intros. simpl in |- *. auto.
+Qed.
+
+Lemma ni_min_O_l : forall d:natinf, ni_min (ni 0) d = ni 0.
+Proof.
+ simple induction d; trivial.
+Qed.
+
+Lemma ni_min_O_r : forall d:natinf, ni_min d (ni 0) = ni 0.
+Proof.
+ intros. rewrite ni_min_comm. apply ni_min_O_l.
+Qed.
+
+Lemma ni_min_inf_l : forall d:natinf, ni_min infty d = d.
+Proof.
+ trivial.
+Qed.
+
+Lemma ni_min_inf_r : forall d:natinf, ni_min d infty = d.
+Proof.
+ simple induction d; trivial.
+Qed.
+
+Definition ni_le (d d':natinf) := ni_min d d' = d.
+
+Lemma ni_le_refl : forall d:natinf, ni_le d d.
+Proof.
+ exact ni_min_idemp.
+Qed.
+
+Lemma ni_le_antisym : forall d d':natinf, ni_le d d' -> ni_le d' d -> d = d'.
+Proof.
+ unfold ni_le in |- *. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial.
+Qed.
+
+Lemma ni_le_trans :
+ forall d d' d'':natinf, ni_le d d' -> ni_le d' d'' -> ni_le d d''.
+Proof.
+ unfold ni_le in |- *. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity.
+Qed.
+
+Lemma ni_le_min_1 : forall d d':natinf, ni_le (ni_min d d') d.
+Proof.
+ unfold ni_le in |- *. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc.
+ rewrite ni_min_idemp. reflexivity.
+Qed.
+
+Lemma ni_le_min_2 : forall d d':natinf, ni_le (ni_min d d') d'.
+Proof.
+ unfold ni_le in |- *. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity.
+Qed.
+
+Lemma ni_min_case : forall d d':natinf, ni_min d d' = d \/ ni_min d d' = d'.
+Proof.
+ simple induction d. intro. right. exact (ni_min_inf_l d').
+ simple induction d'. left. exact (ni_min_inf_r (ni n)).
+ unfold ni_min in |- *. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0).
+ intros. case (H n0). intro. left. rewrite H0. reflexivity.
+ intro. right. rewrite H0. reflexivity.
+ elim n. intro. left. reflexivity.
+ simple induction n1. right. reflexivity.
+ intros. case (H n2). intro. left. simpl in |- *. rewrite H1. reflexivity.
+ intro. right. simpl in |- *. rewrite H1. reflexivity.
+Qed.
+
+Lemma ni_le_total : forall d d':natinf, ni_le d d' \/ ni_le d' d.
+Proof.
+ unfold ni_le in |- *. intros. rewrite (ni_min_comm d' d). apply ni_min_case.
+Qed.
+
+Lemma ni_le_min_induc :
+ forall d d' dm:natinf,
+ ni_le dm d ->
+ ni_le dm d' ->
+ (forall d'':natinf, ni_le d'' d -> ni_le d'' d' -> ni_le d'' dm) ->
+ ni_min d d' = dm.
+Proof.
+ intros. case (ni_min_case d d'). intro. rewrite H2.
+ apply ni_le_antisym. apply H1. apply ni_le_refl.
+ exact H2.
+ exact H.
+ intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le in |- *. rewrite ni_min_comm. exact H2.
+ apply ni_le_refl.
+ exact H0.
+Qed.
+
+Lemma le_ni_le : forall m n:nat, m <= n -> ni_le (ni m) (ni n).
+Proof.
+ cut (forall m n:nat, m <= n -> min m n = m).
+ intros. unfold ni_le, ni_min in |- *. rewrite (H m n H0). reflexivity.
+ simple induction m. trivial.
+ simple induction n0. intro. inversion H0.
+ intros. simpl in |- *. rewrite (H n1 (le_S_n n n1 H1)). reflexivity.
+Qed.
+
+Lemma ni_le_le : forall m n:nat, ni_le (ni m) (ni n) -> m <= n.
+Proof.
+ unfold ni_le in |- *. unfold ni_min in |- *. intros. inversion H. apply le_min_r.
+Qed.
+
+Lemma ad_plength_lb :
+ forall (a:ad) (n:nat),
+ (forall k:nat, k < n -> ad_bit a k = false) -> ni_le (ni n) (ad_plength a).
+Proof.
+ simple induction a. intros. exact (ni_min_inf_r (ni n)).
+ intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt n (ad_plength_1 p)). trivial.
+ intro. absurd (ad_bit (ad_x p) (ad_plength_1 p) = false).
+ rewrite
+ (ad_plength_one (ad_x p) (ad_plength_1 p)
+ (refl_equal (ad_plength (ad_x p)))).
+ discriminate.
+ apply H. exact H0.
+Qed.
+
+Lemma ad_plength_ub :
+ forall (a:ad) (n:nat), ad_bit a n = true -> ni_le (ad_plength a) (ni n).
+Proof.
+ simple induction a. intros. discriminate H.
+ intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt (ad_plength_1 p) n). trivial.
+ intro. absurd (ad_bit (ad_x p) n = true).
+ rewrite
+ (ad_plength_zeros (ad_x p) (ad_plength_1 p)
+ (refl_equal (ad_plength (ad_x p))) n H0).
+ discriminate.
+ exact H.
+Qed.
+
+
+(** We define an ultrametric distance between addresses:
+ $d(a,a')=1/2^pd(a,a')$,
+ where $pd(a,a')$ is the number of identical bits at the beginning
+ of $a$ and $a'$ (infinity if $a=a'$).
+ Instead of working with $d$, we work with $pd$, namely
+ [ad_pdist]: *)
+
+Definition ad_pdist (a a':ad) := ad_plength (ad_xor a a').
+
+(** d is a distance, so $d(a,a')=0$ iff $a=a'$; this means that
+ $pd(a,a')=infty$ iff $a=a'$: *)
+
+Lemma ad_pdist_eq_1 : forall a:ad, ad_pdist a a = infty.
+Proof.
+ intros. unfold ad_pdist in |- *. rewrite ad_xor_nilpotent. reflexivity.
+Qed.
+
+Lemma ad_pdist_eq_2 : forall a a':ad, ad_pdist a a' = infty -> a = a'.
+Proof.
+ intros. apply ad_xor_eq. apply ad_plength_infty. exact H.
+Qed.
+
+(** $d$ is a distance, so $d(a,a')=d(a',a)$: *)
+
+Lemma ad_pdist_comm : forall a a':ad, ad_pdist a a' = ad_pdist a' a.
+Proof.
+ unfold ad_pdist in |- *. intros. rewrite ad_xor_comm. reflexivity.
+Qed.
+
+(** $d$ is an ultrametric distance, that is, not only $d(a,a')\leq
+ d(a,a'')+d(a'',a')$,
+ but in fact $d(a,a')\leq max(d(a,a''),d(a'',a'))$.
+ This means that $min(pd(a,a''),pd(a'',a'))<=pd(a,a')$ (lemma [ad_pdist_ultra] below).
+ This follows from the fact that $a ~Ra~|a| = 1/2^{\texttt{ad\_plength}}(a))$
+ is an ultrametric norm, i.e. that $|a-a'| \leq max (|a-a''|, |a''-a'|)$,
+ or equivalently that $|a+b|<=max(|a|,|b|)$, i.e. that
+ min $(\texttt{ad\_plength}(a), \texttt{ad\_plength}(b)) \leq
+ \texttt{ad\_plength} (a~\texttt{xor}~ b)$
+ (lemma [ad_plength_ultra]).
+*)
+
+Lemma ad_plength_ultra_1 :
+ forall a a':ad,
+ ni_le (ad_plength a) (ad_plength a') ->
+ ni_le (ad_plength a) (ad_plength (ad_xor a a')).
+Proof.
+ simple induction a. intros. unfold ni_le in H. unfold ad_plength at 1 3 in H.
+ rewrite (ni_min_inf_l (ad_plength a')) in H.
+ rewrite (ad_plength_infty a' H). simpl in |- *. apply ni_le_refl.
+ intros. unfold ad_plength at 1 in |- *. apply ad_plength_lb. intros.
+ cut (forall a'':ad, ad_xor (ad_x p) a' = a'' -> ad_bit a'' k = false).
+ intros. apply H1. reflexivity.
+ intro a''. case a''. intro. reflexivity.
+ intros. rewrite <- H1. rewrite (ad_xor_semantics (ad_x p) a' k). unfold adf_xor in |- *.
+ rewrite
+ (ad_plength_zeros (ad_x p) (ad_plength_1 p)
+ (refl_equal (ad_plength (ad_x p))) k H0).
+ generalize H. case a'. trivial.
+ intros. cut (ad_bit (ad_x p1) k = false). intros. rewrite H3. reflexivity.
+ apply ad_plength_zeros with (n := ad_plength_1 p1). reflexivity.
+ apply (lt_le_trans k (ad_plength_1 p) (ad_plength_1 p1)). exact H0.
+ apply ni_le_le. exact H2.
+Qed.
+
+Lemma ad_plength_ultra :
+ forall a a':ad,
+ ni_le (ni_min (ad_plength a) (ad_plength a')) (ad_plength (ad_xor a a')).
+Proof.
+ intros. case (ni_le_total (ad_plength a) (ad_plength a')). intro.
+ cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a).
+ intro. rewrite H0. apply ad_plength_ultra_1. exact H.
+ exact H.
+ intro. cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a').
+ intro. rewrite H0. rewrite ad_xor_comm. apply ad_plength_ultra_1. exact H.
+ rewrite ni_min_comm. exact H.
+Qed.
+
+Lemma ad_pdist_ultra :
+ forall a a' a'':ad,
+ ni_le (ni_min (ad_pdist a a'') (ad_pdist a'' a')) (ad_pdist a a').
+Proof.
+ intros. unfold ad_pdist in |- *. cut (ad_xor (ad_xor a a'') (ad_xor a'' a') = ad_xor a a').
+ intro. rewrite <- H. apply ad_plength_ultra.
+ rewrite ad_xor_assoc. rewrite <- (ad_xor_assoc a'' a'' a'). rewrite ad_xor_nilpotent.
+ rewrite ad_xor_neutral_left. reflexivity.
+Qed. \ No newline at end of file