diff options
Diffstat (limited to 'theories/IntMap/Adist.v')
-rw-r--r-- | theories/IntMap/Adist.v | 336 |
1 files changed, 336 insertions, 0 deletions
diff --git a/theories/IntMap/Adist.v b/theories/IntMap/Adist.v new file mode 100644 index 00000000..cdb4c885 --- /dev/null +++ b/theories/IntMap/Adist.v @@ -0,0 +1,336 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(*i $Id: Adist.v,v 1.9.2.1 2004/07/16 19:31:04 herbelin Exp $ i*) + +Require Import Bool. +Require Import ZArith. +Require Import Arith. +Require Import Min. +Require Import Addr. + +Fixpoint ad_plength_1 (p:positive) : nat := + match p with + | xH => 0 + | xI _ => 0 + | xO p' => S (ad_plength_1 p') + end. + +Inductive natinf : Set := + | infty : natinf + | ni : nat -> natinf. + +Definition ad_plength (a:ad) := + match a with + | ad_z => infty + | ad_x p => ni (ad_plength_1 p) + end. + +Lemma ad_plength_infty : forall a:ad, ad_plength a = infty -> a = ad_z. +Proof. + simple induction a; trivial. + unfold ad_plength in |- *; intros; discriminate H. +Qed. + +Lemma ad_plength_zeros : + forall (a:ad) (n:nat), + ad_plength a = ni n -> forall k:nat, k < n -> ad_bit a k = false. +Proof. + simple induction a; trivial. + simple induction p. simple induction n. intros. inversion H1. + simple induction k. simpl in H1. discriminate H1. + intros. simpl in H1. discriminate H1. + simple induction k. trivial. + generalize H0. case n. intros. inversion H3. + intros. simpl in |- *. unfold ad_bit in H. apply (H n0). simpl in H1. inversion H1. reflexivity. + exact (lt_S_n n1 n0 H3). + simpl in |- *. intros n H. inversion H. intros. inversion H0. +Qed. + +Lemma ad_plength_one : + forall (a:ad) (n:nat), ad_plength a = ni n -> ad_bit a n = true. +Proof. + simple induction a. intros. inversion H. + simple induction p. intros. simpl in H0. inversion H0. reflexivity. + intros. simpl in H0. inversion H0. simpl in |- *. unfold ad_bit in H. apply H. reflexivity. + intros. simpl in H. inversion H. reflexivity. +Qed. + +Lemma ad_plength_first_one : + forall (a:ad) (n:nat), + (forall k:nat, k < n -> ad_bit a k = false) -> + ad_bit a n = true -> ad_plength a = ni n. +Proof. + simple induction a. intros. simpl in H0. discriminate H0. + simple induction p. intros. generalize H0. case n. intros. reflexivity. + intros. absurd (ad_bit (ad_x (xI p0)) 0 = false). trivial with bool. + auto with bool arith. + intros. generalize H0 H1. case n. intros. simpl in H3. discriminate H3. + intros. simpl in |- *. unfold ad_plength in H. + cut (ni (ad_plength_1 p0) = ni n0). intro. inversion H4. reflexivity. + apply H. intros. change (ad_bit (ad_x (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4. + exact H3. + intro. case n. trivial. + intros. simpl in H0. discriminate H0. +Qed. + +Definition ni_min (d d':natinf) := + match d with + | infty => d' + | ni n => match d' with + | infty => d + | ni n' => ni (min n n') + end + end. + +Lemma ni_min_idemp : forall d:natinf, ni_min d d = d. +Proof. + simple induction d; trivial. + unfold ni_min in |- *. + simple induction n; trivial. + intros. + simpl in |- *. + inversion H. + rewrite H1. + rewrite H1. + reflexivity. +Qed. + +Lemma ni_min_comm : forall d d':natinf, ni_min d d' = ni_min d' d. +Proof. + simple induction d. simple induction d'; trivial. + simple induction d'; trivial. elim n. simple induction n0; trivial. + intros. elim n1; trivial. intros. unfold ni_min in H. cut (min n0 n2 = min n2 n0). + intro. unfold ni_min in |- *. simpl in |- *. rewrite H1. reflexivity. + cut (ni (min n0 n2) = ni (min n2 n0)). intros. + inversion H1; trivial. + exact (H n2). +Qed. + +Lemma ni_min_assoc : + forall d d' d'':natinf, ni_min (ni_min d d') d'' = ni_min d (ni_min d' d''). +Proof. + simple induction d; trivial. simple induction d'; trivial. + simple induction d''; trivial. + unfold ni_min in |- *. intro. cut (min (min n n0) n1 = min n (min n0 n1)). + intro. rewrite H. reflexivity. + generalize n0 n1. elim n; trivial. + simple induction n3; trivial. simple induction n5; trivial. + intros. simpl in |- *. auto. +Qed. + +Lemma ni_min_O_l : forall d:natinf, ni_min (ni 0) d = ni 0. +Proof. + simple induction d; trivial. +Qed. + +Lemma ni_min_O_r : forall d:natinf, ni_min d (ni 0) = ni 0. +Proof. + intros. rewrite ni_min_comm. apply ni_min_O_l. +Qed. + +Lemma ni_min_inf_l : forall d:natinf, ni_min infty d = d. +Proof. + trivial. +Qed. + +Lemma ni_min_inf_r : forall d:natinf, ni_min d infty = d. +Proof. + simple induction d; trivial. +Qed. + +Definition ni_le (d d':natinf) := ni_min d d' = d. + +Lemma ni_le_refl : forall d:natinf, ni_le d d. +Proof. + exact ni_min_idemp. +Qed. + +Lemma ni_le_antisym : forall d d':natinf, ni_le d d' -> ni_le d' d -> d = d'. +Proof. + unfold ni_le in |- *. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial. +Qed. + +Lemma ni_le_trans : + forall d d' d'':natinf, ni_le d d' -> ni_le d' d'' -> ni_le d d''. +Proof. + unfold ni_le in |- *. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity. +Qed. + +Lemma ni_le_min_1 : forall d d':natinf, ni_le (ni_min d d') d. +Proof. + unfold ni_le in |- *. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc. + rewrite ni_min_idemp. reflexivity. +Qed. + +Lemma ni_le_min_2 : forall d d':natinf, ni_le (ni_min d d') d'. +Proof. + unfold ni_le in |- *. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity. +Qed. + +Lemma ni_min_case : forall d d':natinf, ni_min d d' = d \/ ni_min d d' = d'. +Proof. + simple induction d. intro. right. exact (ni_min_inf_l d'). + simple induction d'. left. exact (ni_min_inf_r (ni n)). + unfold ni_min in |- *. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0). + intros. case (H n0). intro. left. rewrite H0. reflexivity. + intro. right. rewrite H0. reflexivity. + elim n. intro. left. reflexivity. + simple induction n1. right. reflexivity. + intros. case (H n2). intro. left. simpl in |- *. rewrite H1. reflexivity. + intro. right. simpl in |- *. rewrite H1. reflexivity. +Qed. + +Lemma ni_le_total : forall d d':natinf, ni_le d d' \/ ni_le d' d. +Proof. + unfold ni_le in |- *. intros. rewrite (ni_min_comm d' d). apply ni_min_case. +Qed. + +Lemma ni_le_min_induc : + forall d d' dm:natinf, + ni_le dm d -> + ni_le dm d' -> + (forall d'':natinf, ni_le d'' d -> ni_le d'' d' -> ni_le d'' dm) -> + ni_min d d' = dm. +Proof. + intros. case (ni_min_case d d'). intro. rewrite H2. + apply ni_le_antisym. apply H1. apply ni_le_refl. + exact H2. + exact H. + intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le in |- *. rewrite ni_min_comm. exact H2. + apply ni_le_refl. + exact H0. +Qed. + +Lemma le_ni_le : forall m n:nat, m <= n -> ni_le (ni m) (ni n). +Proof. + cut (forall m n:nat, m <= n -> min m n = m). + intros. unfold ni_le, ni_min in |- *. rewrite (H m n H0). reflexivity. + simple induction m. trivial. + simple induction n0. intro. inversion H0. + intros. simpl in |- *. rewrite (H n1 (le_S_n n n1 H1)). reflexivity. +Qed. + +Lemma ni_le_le : forall m n:nat, ni_le (ni m) (ni n) -> m <= n. +Proof. + unfold ni_le in |- *. unfold ni_min in |- *. intros. inversion H. apply le_min_r. +Qed. + +Lemma ad_plength_lb : + forall (a:ad) (n:nat), + (forall k:nat, k < n -> ad_bit a k = false) -> ni_le (ni n) (ad_plength a). +Proof. + simple induction a. intros. exact (ni_min_inf_r (ni n)). + intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt n (ad_plength_1 p)). trivial. + intro. absurd (ad_bit (ad_x p) (ad_plength_1 p) = false). + rewrite + (ad_plength_one (ad_x p) (ad_plength_1 p) + (refl_equal (ad_plength (ad_x p)))). + discriminate. + apply H. exact H0. +Qed. + +Lemma ad_plength_ub : + forall (a:ad) (n:nat), ad_bit a n = true -> ni_le (ad_plength a) (ni n). +Proof. + simple induction a. intros. discriminate H. + intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt (ad_plength_1 p) n). trivial. + intro. absurd (ad_bit (ad_x p) n = true). + rewrite + (ad_plength_zeros (ad_x p) (ad_plength_1 p) + (refl_equal (ad_plength (ad_x p))) n H0). + discriminate. + exact H. +Qed. + + +(** We define an ultrametric distance between addresses: + $d(a,a')=1/2^pd(a,a')$, + where $pd(a,a')$ is the number of identical bits at the beginning + of $a$ and $a'$ (infinity if $a=a'$). + Instead of working with $d$, we work with $pd$, namely + [ad_pdist]: *) + +Definition ad_pdist (a a':ad) := ad_plength (ad_xor a a'). + +(** d is a distance, so $d(a,a')=0$ iff $a=a'$; this means that + $pd(a,a')=infty$ iff $a=a'$: *) + +Lemma ad_pdist_eq_1 : forall a:ad, ad_pdist a a = infty. +Proof. + intros. unfold ad_pdist in |- *. rewrite ad_xor_nilpotent. reflexivity. +Qed. + +Lemma ad_pdist_eq_2 : forall a a':ad, ad_pdist a a' = infty -> a = a'. +Proof. + intros. apply ad_xor_eq. apply ad_plength_infty. exact H. +Qed. + +(** $d$ is a distance, so $d(a,a')=d(a',a)$: *) + +Lemma ad_pdist_comm : forall a a':ad, ad_pdist a a' = ad_pdist a' a. +Proof. + unfold ad_pdist in |- *. intros. rewrite ad_xor_comm. reflexivity. +Qed. + +(** $d$ is an ultrametric distance, that is, not only $d(a,a')\leq + d(a,a'')+d(a'',a')$, + but in fact $d(a,a')\leq max(d(a,a''),d(a'',a'))$. + This means that $min(pd(a,a''),pd(a'',a'))<=pd(a,a')$ (lemma [ad_pdist_ultra] below). + This follows from the fact that $a ~Ra~|a| = 1/2^{\texttt{ad\_plength}}(a))$ + is an ultrametric norm, i.e. that $|a-a'| \leq max (|a-a''|, |a''-a'|)$, + or equivalently that $|a+b|<=max(|a|,|b|)$, i.e. that + min $(\texttt{ad\_plength}(a), \texttt{ad\_plength}(b)) \leq + \texttt{ad\_plength} (a~\texttt{xor}~ b)$ + (lemma [ad_plength_ultra]). +*) + +Lemma ad_plength_ultra_1 : + forall a a':ad, + ni_le (ad_plength a) (ad_plength a') -> + ni_le (ad_plength a) (ad_plength (ad_xor a a')). +Proof. + simple induction a. intros. unfold ni_le in H. unfold ad_plength at 1 3 in H. + rewrite (ni_min_inf_l (ad_plength a')) in H. + rewrite (ad_plength_infty a' H). simpl in |- *. apply ni_le_refl. + intros. unfold ad_plength at 1 in |- *. apply ad_plength_lb. intros. + cut (forall a'':ad, ad_xor (ad_x p) a' = a'' -> ad_bit a'' k = false). + intros. apply H1. reflexivity. + intro a''. case a''. intro. reflexivity. + intros. rewrite <- H1. rewrite (ad_xor_semantics (ad_x p) a' k). unfold adf_xor in |- *. + rewrite + (ad_plength_zeros (ad_x p) (ad_plength_1 p) + (refl_equal (ad_plength (ad_x p))) k H0). + generalize H. case a'. trivial. + intros. cut (ad_bit (ad_x p1) k = false). intros. rewrite H3. reflexivity. + apply ad_plength_zeros with (n := ad_plength_1 p1). reflexivity. + apply (lt_le_trans k (ad_plength_1 p) (ad_plength_1 p1)). exact H0. + apply ni_le_le. exact H2. +Qed. + +Lemma ad_plength_ultra : + forall a a':ad, + ni_le (ni_min (ad_plength a) (ad_plength a')) (ad_plength (ad_xor a a')). +Proof. + intros. case (ni_le_total (ad_plength a) (ad_plength a')). intro. + cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a). + intro. rewrite H0. apply ad_plength_ultra_1. exact H. + exact H. + intro. cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a'). + intro. rewrite H0. rewrite ad_xor_comm. apply ad_plength_ultra_1. exact H. + rewrite ni_min_comm. exact H. +Qed. + +Lemma ad_pdist_ultra : + forall a a' a'':ad, + ni_le (ni_min (ad_pdist a a'') (ad_pdist a'' a')) (ad_pdist a a'). +Proof. + intros. unfold ad_pdist in |- *. cut (ad_xor (ad_xor a a'') (ad_xor a'' a') = ad_xor a a'). + intro. rewrite <- H. apply ad_plength_ultra. + rewrite ad_xor_assoc. rewrite <- (ad_xor_assoc a'' a'' a'). rewrite ad_xor_nilpotent. + rewrite ad_xor_neutral_left. reflexivity. +Qed.
\ No newline at end of file |