diff options
Diffstat (limited to 'theories/IntMap/Adist.v')
-rw-r--r-- | theories/IntMap/Adist.v | 336 |
1 files changed, 0 insertions, 336 deletions
diff --git a/theories/IntMap/Adist.v b/theories/IntMap/Adist.v deleted file mode 100644 index 790218ce..00000000 --- a/theories/IntMap/Adist.v +++ /dev/null @@ -1,336 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(*i $Id: Adist.v 5920 2004-07-16 20:01:26Z herbelin $ i*) - -Require Import Bool. -Require Import ZArith. -Require Import Arith. -Require Import Min. -Require Import Addr. - -Fixpoint ad_plength_1 (p:positive) : nat := - match p with - | xH => 0 - | xI _ => 0 - | xO p' => S (ad_plength_1 p') - end. - -Inductive natinf : Set := - | infty : natinf - | ni : nat -> natinf. - -Definition ad_plength (a:ad) := - match a with - | ad_z => infty - | ad_x p => ni (ad_plength_1 p) - end. - -Lemma ad_plength_infty : forall a:ad, ad_plength a = infty -> a = ad_z. -Proof. - simple induction a; trivial. - unfold ad_plength in |- *; intros; discriminate H. -Qed. - -Lemma ad_plength_zeros : - forall (a:ad) (n:nat), - ad_plength a = ni n -> forall k:nat, k < n -> ad_bit a k = false. -Proof. - simple induction a; trivial. - simple induction p. simple induction n. intros. inversion H1. - simple induction k. simpl in H1. discriminate H1. - intros. simpl in H1. discriminate H1. - simple induction k. trivial. - generalize H0. case n. intros. inversion H3. - intros. simpl in |- *. unfold ad_bit in H. apply (H n0). simpl in H1. inversion H1. reflexivity. - exact (lt_S_n n1 n0 H3). - simpl in |- *. intros n H. inversion H. intros. inversion H0. -Qed. - -Lemma ad_plength_one : - forall (a:ad) (n:nat), ad_plength a = ni n -> ad_bit a n = true. -Proof. - simple induction a. intros. inversion H. - simple induction p. intros. simpl in H0. inversion H0. reflexivity. - intros. simpl in H0. inversion H0. simpl in |- *. unfold ad_bit in H. apply H. reflexivity. - intros. simpl in H. inversion H. reflexivity. -Qed. - -Lemma ad_plength_first_one : - forall (a:ad) (n:nat), - (forall k:nat, k < n -> ad_bit a k = false) -> - ad_bit a n = true -> ad_plength a = ni n. -Proof. - simple induction a. intros. simpl in H0. discriminate H0. - simple induction p. intros. generalize H0. case n. intros. reflexivity. - intros. absurd (ad_bit (ad_x (xI p0)) 0 = false). trivial with bool. - auto with bool arith. - intros. generalize H0 H1. case n. intros. simpl in H3. discriminate H3. - intros. simpl in |- *. unfold ad_plength in H. - cut (ni (ad_plength_1 p0) = ni n0). intro. inversion H4. reflexivity. - apply H. intros. change (ad_bit (ad_x (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4. - exact H3. - intro. case n. trivial. - intros. simpl in H0. discriminate H0. -Qed. - -Definition ni_min (d d':natinf) := - match d with - | infty => d' - | ni n => match d' with - | infty => d - | ni n' => ni (min n n') - end - end. - -Lemma ni_min_idemp : forall d:natinf, ni_min d d = d. -Proof. - simple induction d; trivial. - unfold ni_min in |- *. - simple induction n; trivial. - intros. - simpl in |- *. - inversion H. - rewrite H1. - rewrite H1. - reflexivity. -Qed. - -Lemma ni_min_comm : forall d d':natinf, ni_min d d' = ni_min d' d. -Proof. - simple induction d. simple induction d'; trivial. - simple induction d'; trivial. elim n. simple induction n0; trivial. - intros. elim n1; trivial. intros. unfold ni_min in H. cut (min n0 n2 = min n2 n0). - intro. unfold ni_min in |- *. simpl in |- *. rewrite H1. reflexivity. - cut (ni (min n0 n2) = ni (min n2 n0)). intros. - inversion H1; trivial. - exact (H n2). -Qed. - -Lemma ni_min_assoc : - forall d d' d'':natinf, ni_min (ni_min d d') d'' = ni_min d (ni_min d' d''). -Proof. - simple induction d; trivial. simple induction d'; trivial. - simple induction d''; trivial. - unfold ni_min in |- *. intro. cut (min (min n n0) n1 = min n (min n0 n1)). - intro. rewrite H. reflexivity. - generalize n0 n1. elim n; trivial. - simple induction n3; trivial. simple induction n5; trivial. - intros. simpl in |- *. auto. -Qed. - -Lemma ni_min_O_l : forall d:natinf, ni_min (ni 0) d = ni 0. -Proof. - simple induction d; trivial. -Qed. - -Lemma ni_min_O_r : forall d:natinf, ni_min d (ni 0) = ni 0. -Proof. - intros. rewrite ni_min_comm. apply ni_min_O_l. -Qed. - -Lemma ni_min_inf_l : forall d:natinf, ni_min infty d = d. -Proof. - trivial. -Qed. - -Lemma ni_min_inf_r : forall d:natinf, ni_min d infty = d. -Proof. - simple induction d; trivial. -Qed. - -Definition ni_le (d d':natinf) := ni_min d d' = d. - -Lemma ni_le_refl : forall d:natinf, ni_le d d. -Proof. - exact ni_min_idemp. -Qed. - -Lemma ni_le_antisym : forall d d':natinf, ni_le d d' -> ni_le d' d -> d = d'. -Proof. - unfold ni_le in |- *. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial. -Qed. - -Lemma ni_le_trans : - forall d d' d'':natinf, ni_le d d' -> ni_le d' d'' -> ni_le d d''. -Proof. - unfold ni_le in |- *. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity. -Qed. - -Lemma ni_le_min_1 : forall d d':natinf, ni_le (ni_min d d') d. -Proof. - unfold ni_le in |- *. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc. - rewrite ni_min_idemp. reflexivity. -Qed. - -Lemma ni_le_min_2 : forall d d':natinf, ni_le (ni_min d d') d'. -Proof. - unfold ni_le in |- *. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity. -Qed. - -Lemma ni_min_case : forall d d':natinf, ni_min d d' = d \/ ni_min d d' = d'. -Proof. - simple induction d. intro. right. exact (ni_min_inf_l d'). - simple induction d'. left. exact (ni_min_inf_r (ni n)). - unfold ni_min in |- *. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0). - intros. case (H n0). intro. left. rewrite H0. reflexivity. - intro. right. rewrite H0. reflexivity. - elim n. intro. left. reflexivity. - simple induction n1. right. reflexivity. - intros. case (H n2). intro. left. simpl in |- *. rewrite H1. reflexivity. - intro. right. simpl in |- *. rewrite H1. reflexivity. -Qed. - -Lemma ni_le_total : forall d d':natinf, ni_le d d' \/ ni_le d' d. -Proof. - unfold ni_le in |- *. intros. rewrite (ni_min_comm d' d). apply ni_min_case. -Qed. - -Lemma ni_le_min_induc : - forall d d' dm:natinf, - ni_le dm d -> - ni_le dm d' -> - (forall d'':natinf, ni_le d'' d -> ni_le d'' d' -> ni_le d'' dm) -> - ni_min d d' = dm. -Proof. - intros. case (ni_min_case d d'). intro. rewrite H2. - apply ni_le_antisym. apply H1. apply ni_le_refl. - exact H2. - exact H. - intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le in |- *. rewrite ni_min_comm. exact H2. - apply ni_le_refl. - exact H0. -Qed. - -Lemma le_ni_le : forall m n:nat, m <= n -> ni_le (ni m) (ni n). -Proof. - cut (forall m n:nat, m <= n -> min m n = m). - intros. unfold ni_le, ni_min in |- *. rewrite (H m n H0). reflexivity. - simple induction m. trivial. - simple induction n0. intro. inversion H0. - intros. simpl in |- *. rewrite (H n1 (le_S_n n n1 H1)). reflexivity. -Qed. - -Lemma ni_le_le : forall m n:nat, ni_le (ni m) (ni n) -> m <= n. -Proof. - unfold ni_le in |- *. unfold ni_min in |- *. intros. inversion H. apply le_min_r. -Qed. - -Lemma ad_plength_lb : - forall (a:ad) (n:nat), - (forall k:nat, k < n -> ad_bit a k = false) -> ni_le (ni n) (ad_plength a). -Proof. - simple induction a. intros. exact (ni_min_inf_r (ni n)). - intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt n (ad_plength_1 p)). trivial. - intro. absurd (ad_bit (ad_x p) (ad_plength_1 p) = false). - rewrite - (ad_plength_one (ad_x p) (ad_plength_1 p) - (refl_equal (ad_plength (ad_x p)))). - discriminate. - apply H. exact H0. -Qed. - -Lemma ad_plength_ub : - forall (a:ad) (n:nat), ad_bit a n = true -> ni_le (ad_plength a) (ni n). -Proof. - simple induction a. intros. discriminate H. - intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt (ad_plength_1 p) n). trivial. - intro. absurd (ad_bit (ad_x p) n = true). - rewrite - (ad_plength_zeros (ad_x p) (ad_plength_1 p) - (refl_equal (ad_plength (ad_x p))) n H0). - discriminate. - exact H. -Qed. - - -(** We define an ultrametric distance between addresses: - $d(a,a')=1/2^pd(a,a')$, - where $pd(a,a')$ is the number of identical bits at the beginning - of $a$ and $a'$ (infinity if $a=a'$). - Instead of working with $d$, we work with $pd$, namely - [ad_pdist]: *) - -Definition ad_pdist (a a':ad) := ad_plength (ad_xor a a'). - -(** d is a distance, so $d(a,a')=0$ iff $a=a'$; this means that - $pd(a,a')=infty$ iff $a=a'$: *) - -Lemma ad_pdist_eq_1 : forall a:ad, ad_pdist a a = infty. -Proof. - intros. unfold ad_pdist in |- *. rewrite ad_xor_nilpotent. reflexivity. -Qed. - -Lemma ad_pdist_eq_2 : forall a a':ad, ad_pdist a a' = infty -> a = a'. -Proof. - intros. apply ad_xor_eq. apply ad_plength_infty. exact H. -Qed. - -(** $d$ is a distance, so $d(a,a')=d(a',a)$: *) - -Lemma ad_pdist_comm : forall a a':ad, ad_pdist a a' = ad_pdist a' a. -Proof. - unfold ad_pdist in |- *. intros. rewrite ad_xor_comm. reflexivity. -Qed. - -(** $d$ is an ultrametric distance, that is, not only $d(a,a')\leq - d(a,a'')+d(a'',a')$, - but in fact $d(a,a')\leq max(d(a,a''),d(a'',a'))$. - This means that $min(pd(a,a''),pd(a'',a'))<=pd(a,a')$ (lemma [ad_pdist_ultra] below). - This follows from the fact that $a ~Ra~|a| = 1/2^{\texttt{ad\_plength}}(a))$ - is an ultrametric norm, i.e. that $|a-a'| \leq max (|a-a''|, |a''-a'|)$, - or equivalently that $|a+b|<=max(|a|,|b|)$, i.e. that - min $(\texttt{ad\_plength}(a), \texttt{ad\_plength}(b)) \leq - \texttt{ad\_plength} (a~\texttt{xor}~ b)$ - (lemma [ad_plength_ultra]). -*) - -Lemma ad_plength_ultra_1 : - forall a a':ad, - ni_le (ad_plength a) (ad_plength a') -> - ni_le (ad_plength a) (ad_plength (ad_xor a a')). -Proof. - simple induction a. intros. unfold ni_le in H. unfold ad_plength at 1 3 in H. - rewrite (ni_min_inf_l (ad_plength a')) in H. - rewrite (ad_plength_infty a' H). simpl in |- *. apply ni_le_refl. - intros. unfold ad_plength at 1 in |- *. apply ad_plength_lb. intros. - cut (forall a'':ad, ad_xor (ad_x p) a' = a'' -> ad_bit a'' k = false). - intros. apply H1. reflexivity. - intro a''. case a''. intro. reflexivity. - intros. rewrite <- H1. rewrite (ad_xor_semantics (ad_x p) a' k). unfold adf_xor in |- *. - rewrite - (ad_plength_zeros (ad_x p) (ad_plength_1 p) - (refl_equal (ad_plength (ad_x p))) k H0). - generalize H. case a'. trivial. - intros. cut (ad_bit (ad_x p1) k = false). intros. rewrite H3. reflexivity. - apply ad_plength_zeros with (n := ad_plength_1 p1). reflexivity. - apply (lt_le_trans k (ad_plength_1 p) (ad_plength_1 p1)). exact H0. - apply ni_le_le. exact H2. -Qed. - -Lemma ad_plength_ultra : - forall a a':ad, - ni_le (ni_min (ad_plength a) (ad_plength a')) (ad_plength (ad_xor a a')). -Proof. - intros. case (ni_le_total (ad_plength a) (ad_plength a')). intro. - cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a). - intro. rewrite H0. apply ad_plength_ultra_1. exact H. - exact H. - intro. cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a'). - intro. rewrite H0. rewrite ad_xor_comm. apply ad_plength_ultra_1. exact H. - rewrite ni_min_comm. exact H. -Qed. - -Lemma ad_pdist_ultra : - forall a a' a'':ad, - ni_le (ni_min (ad_pdist a a'') (ad_pdist a'' a')) (ad_pdist a a'). -Proof. - intros. unfold ad_pdist in |- *. cut (ad_xor (ad_xor a a'') (ad_xor a'' a') = ad_xor a a'). - intro. rewrite <- H. apply ad_plength_ultra. - rewrite ad_xor_assoc. rewrite <- (ad_xor_assoc a'' a'' a'). rewrite ad_xor_nilpotent. - rewrite ad_xor_neutral_left. reflexivity. -Qed.
\ No newline at end of file |