summaryrefslogtreecommitdiff
path: root/theories/Init/Nat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Init/Nat.v')
-rw-r--r--theories/Init/Nat.v297
1 files changed, 297 insertions, 0 deletions
diff --git a/theories/Init/Nat.v b/theories/Init/Nat.v
new file mode 100644
index 00000000..afb46436
--- /dev/null
+++ b/theories/Init/Nat.v
@@ -0,0 +1,297 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Notations Logic Datatypes.
+
+Local Open Scope nat_scope.
+
+(**********************************************************************)
+(** * Peano natural numbers, definitions of operations *)
+(**********************************************************************)
+
+(** This file is meant to be used as a whole module,
+ without importing it, leading to qualified definitions
+ (e.g. Nat.pred) *)
+
+Definition t := nat.
+
+(** ** Constants *)
+
+Definition zero := 0.
+Definition one := 1.
+Definition two := 2.
+
+(** ** Basic operations *)
+
+Definition succ := S.
+
+Definition pred n :=
+ match n with
+ | 0 => n
+ | S u => u
+ end.
+
+Fixpoint add n m :=
+ match n with
+ | 0 => m
+ | S p => S (p + m)
+ end
+
+where "n + m" := (add n m) : nat_scope.
+
+Definition double n := n + n.
+
+Fixpoint mul n m :=
+ match n with
+ | 0 => 0
+ | S p => m + p * m
+ end
+
+where "n * m" := (mul n m) : nat_scope.
+
+(** Truncated subtraction: [n-m] is [0] if [n<=m] *)
+
+Fixpoint sub n m :=
+ match n, m with
+ | S k, S l => k - l
+ | _, _ => n
+ end
+
+where "n - m" := (sub n m) : nat_scope.
+
+(** ** Comparisons *)
+
+Fixpoint eqb n m : bool :=
+ match n, m with
+ | 0, 0 => true
+ | 0, S _ => false
+ | S _, 0 => false
+ | S n', S m' => eqb n' m'
+ end.
+
+Fixpoint leb n m : bool :=
+ match n, m with
+ | 0, _ => true
+ | _, 0 => false
+ | S n', S m' => leb n' m'
+ end.
+
+Definition ltb n m := leb (S n) m.
+
+Infix "=?" := eqb (at level 70) : nat_scope.
+Infix "<=?" := leb (at level 70) : nat_scope.
+Infix "<?" := ltb (at level 70) : nat_scope.
+
+Fixpoint compare n m : comparison :=
+ match n, m with
+ | 0, 0 => Eq
+ | 0, S _ => Lt
+ | S _, 0 => Gt
+ | S n', S m' => compare n' m'
+ end.
+
+Infix "?=" := compare (at level 70) : nat_scope.
+
+(** ** Minimum, maximum *)
+
+Fixpoint max n m :=
+ match n, m with
+ | 0, _ => m
+ | S n', 0 => n
+ | S n', S m' => S (max n' m')
+ end.
+
+Fixpoint min n m :=
+ match n, m with
+ | 0, _ => 0
+ | S n', 0 => 0
+ | S n', S m' => S (min n' m')
+ end.
+
+(** ** Parity tests *)
+
+Fixpoint even n : bool :=
+ match n with
+ | 0 => true
+ | 1 => false
+ | S (S n') => even n'
+ end.
+
+Definition odd n := negb (even n).
+
+(** ** Power *)
+
+Fixpoint pow n m :=
+ match m with
+ | 0 => 1
+ | S m => n * (n^m)
+ end
+
+where "n ^ m" := (pow n m) : nat_scope.
+
+(** ** Euclidean division *)
+
+(** This division is linear and tail-recursive.
+ In [divmod], [y] is the predecessor of the actual divisor,
+ and [u] is [y] minus the real remainder
+*)
+
+Fixpoint divmod x y q u :=
+ match x with
+ | 0 => (q,u)
+ | S x' => match u with
+ | 0 => divmod x' y (S q) y
+ | S u' => divmod x' y q u'
+ end
+ end.
+
+Definition div x y :=
+ match y with
+ | 0 => y
+ | S y' => fst (divmod x y' 0 y')
+ end.
+
+Definition modulo x y :=
+ match y with
+ | 0 => y
+ | S y' => y' - snd (divmod x y' 0 y')
+ end.
+
+Infix "/" := div : nat_scope.
+Infix "mod" := modulo (at level 40, no associativity) : nat_scope.
+
+
+(** ** Greatest common divisor *)
+
+(** We use Euclid algorithm, which is normally not structural,
+ but Coq is now clever enough to accept this (behind modulo
+ there is a subtraction, which now preserves being a subterm)
+*)
+
+Fixpoint gcd a b :=
+ match a with
+ | O => b
+ | S a' => gcd (b mod (S a')) (S a')
+ end.
+
+(** ** Square *)
+
+Definition square n := n * n.
+
+(** ** Square root *)
+
+(** The following square root function is linear (and tail-recursive).
+ With Peano representation, we can't do better. For faster algorithm,
+ see Psqrt/Zsqrt/Nsqrt...
+
+ We search the square root of n = k + p^2 + (q - r)
+ with q = 2p and 0<=r<=q. We start with p=q=r=0, hence
+ looking for the square root of n = k. Then we progressively
+ decrease k and r. When k = S k' and r=0, it means we can use (S p)
+ as new sqrt candidate, since (S k')+p^2+2p = k'+(S p)^2.
+ When k reaches 0, we have found the biggest p^2 square contained
+ in n, hence the square root of n is p.
+*)
+
+Fixpoint sqrt_iter k p q r :=
+ match k with
+ | O => p
+ | S k' => match r with
+ | O => sqrt_iter k' (S p) (S (S q)) (S (S q))
+ | S r' => sqrt_iter k' p q r'
+ end
+ end.
+
+Definition sqrt n := sqrt_iter n 0 0 0.
+
+(** ** Log2 *)
+
+(** This base-2 logarithm is linear and tail-recursive.
+
+ In [log2_iter], we maintain the logarithm [p] of the counter [q],
+ while [r] is the distance between [q] and the next power of 2,
+ more precisely [q + S r = 2^(S p)] and [r<2^p]. At each
+ recursive call, [q] goes up while [r] goes down. When [r]
+ is 0, we know that [q] has almost reached a power of 2,
+ and we increase [p] at the next call, while resetting [r]
+ to [q].
+
+ Graphically (numbers are [q], stars are [r]) :
+
+<<
+ 10
+ 9
+ 8
+ 7 *
+ 6 *
+ 5 ...
+ 4
+ 3 *
+ 2 *
+ 1 * *
+0 * * *
+>>
+
+ We stop when [k], the global downward counter reaches 0.
+ At that moment, [q] is the number we're considering (since
+ [k+q] is invariant), and [p] its logarithm.
+*)
+
+Fixpoint log2_iter k p q r :=
+ match k with
+ | O => p
+ | S k' => match r with
+ | O => log2_iter k' (S p) (S q) q
+ | S r' => log2_iter k' p (S q) r'
+ end
+ end.
+
+Definition log2 n := log2_iter (pred n) 0 1 0.
+
+(** Iterator on natural numbers *)
+
+Definition iter (n:nat) {A} (f:A->A) (x:A) : A :=
+ nat_rect (fun _ => A) x (fun _ => f) n.
+
+(** Bitwise operations *)
+
+(** We provide here some bitwise operations for unary numbers.
+ Some might be really naive, they are just there for fullfiling
+ the same interface as other for natural representations. As
+ soon as binary representations such as NArith are available,
+ it is clearly better to convert to/from them and use their ops.
+*)
+
+Fixpoint div2 n :=
+ match n with
+ | 0 => 0
+ | S 0 => 0
+ | S (S n') => S (div2 n')
+ end.
+
+Fixpoint testbit a n : bool :=
+ match n with
+ | 0 => odd a
+ | S n => testbit (div2 a) n
+ end.
+
+Definition shiftl a := nat_rect _ a (fun _ => double).
+Definition shiftr a := nat_rect _ a (fun _ => div2).
+
+Fixpoint bitwise (op:bool->bool->bool) n a b :=
+ match n with
+ | 0 => 0
+ | S n' =>
+ (if op (odd a) (odd b) then 1 else 0) +
+ 2*(bitwise op n' (div2 a) (div2 b))
+ end.
+
+Definition land a b := bitwise andb a a b.
+Definition lor a b := bitwise orb (max a b) a b.
+Definition ldiff a b := bitwise (fun b b' => andb b (negb b')) a a b.
+Definition lxor a b := bitwise xorb (max a b) a b.