diff options
Diffstat (limited to 'theories/Init/Logic.v')
-rw-r--r-- | theories/Init/Logic.v | 135 |
1 files changed, 114 insertions, 21 deletions
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v index 8b487432..6a636ccc 100644 --- a/theories/Init/Logic.v +++ b/theories/Init/Logic.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Logic.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Logic.v 10304 2007-11-08 17:06:32Z emakarov $ i*) Set Implicit Arguments. @@ -16,10 +16,10 @@ Require Import Notations. (** [True] is the always true proposition *) Inductive True : Prop := - I : True. + I : True. (** [False] is the always false proposition *) -Inductive False : Prop :=. +Inductive False : Prop :=. (** [not A], written [~A], is the negation of [A] *) Definition not (A:Prop) := A -> False. @@ -30,14 +30,14 @@ Hint Unfold not: core. (** [and A B], written [A /\ B], is the conjunction of [A] and [B] - [conj p q] is a proof of [A /\ B] as soon as + [conj p q] is a proof of [A /\ B] as soon as [p] is a proof of [A] and [q] a proof of [B] [proj1] and [proj2] are first and second projections of a conjunction *) Inductive and (A B:Prop) : Prop := - conj : A -> B -> A /\ B - + conj : A -> B -> A /\ B + where "A /\ B" := (and A B) : type_scope. Section Conjunction. @@ -60,7 +60,7 @@ End Conjunction. Inductive or (A B:Prop) : Prop := | or_introl : A -> A \/ B - | or_intror : B -> A \/ B + | or_intror : B -> A \/ B where "A \/ B" := (or A B) : type_scope. @@ -89,6 +89,67 @@ Theorem iff_sym : forall A B:Prop, (A <-> B) -> (B <-> A). End Equivalence. +Hint Unfold iff: extcore. + +(** Some equivalences *) + +Theorem neg_false : forall A : Prop, ~ A <-> (A <-> False). +Proof. +intro A; unfold not; split. +intro H; split; [exact H | intro H1; elim H1]. +intros [H _]; exact H. +Qed. + +Theorem and_cancel_l : forall A B C : Prop, + (B -> A) -> (C -> A) -> ((A /\ B <-> A /\ C) <-> (B <-> C)). +Proof. +intros; tauto. +Qed. + +Theorem and_cancel_r : forall A B C : Prop, + (B -> A) -> (C -> A) -> ((B /\ A <-> C /\ A) <-> (B <-> C)). +Proof. +intros; tauto. +Qed. + +Theorem or_cancel_l : forall A B C : Prop, + (B -> ~ A) -> (C -> ~ A) -> ((A \/ B <-> A \/ C) <-> (B <-> C)). +Proof. +intros; tauto. +Qed. + +Theorem or_cancel_r : forall A B C : Prop, + (B -> ~ A) -> (C -> ~ A) -> ((B \/ A <-> C \/ A) <-> (B <-> C)). +Proof. +intros; tauto. +Qed. + +(** Backward direction of the equivalences above does not need assumptions *) + +Theorem and_iff_compat_l : forall A B C : Prop, + (B <-> C) -> (A /\ B <-> A /\ C). +Proof. +intros; tauto. +Qed. + +Theorem and_iff_compat_r : forall A B C : Prop, + (B <-> C) -> (B /\ A <-> C /\ A). +Proof. +intros; tauto. +Qed. + +Theorem or_iff_compat_l : forall A B C : Prop, + (B <-> C) -> (A \/ B <-> A \/ C). +Proof. +intros; tauto. +Qed. + +Theorem or_iff_compat_r : forall A B C : Prop, + (B <-> C) -> (B \/ A <-> C \/ A). +Proof. +intros; tauto. +Qed. + (** [(IF_then_else P Q R)], written [IF P then Q else R] denotes either [P] and [Q], or [~P] and [Q] *) @@ -103,7 +164,7 @@ Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3) expresses the existence of an [x] of some type [A] in [Set] which satisfies the predicate [P]. This is existential quantification. - [ex2 P Q], or simply [exists2 x, P x & Q x], or also + [ex2 P Q], or simply [exists2 x, P x & Q x], or also [exists2 x:A, P x & Q x], expresses the existence of an [x] of type [A] which satisfies both predicates [P] and [Q]. @@ -123,14 +184,14 @@ Inductive ex (A:Type) (P:A -> Prop) : Prop := Inductive ex2 (A:Type) (P Q:A -> Prop) : Prop := ex_intro2 : forall x:A, P x -> Q x -> ex2 (A:=A) P Q. -Definition all (A:Type) (P:A -> Prop) := forall x:A, P x. +Definition all (A:Type) (P:A -> Prop) := forall x:A, P x. (* Rule order is important to give printing priority to fully typed exists *) Notation "'exists' x , p" := (ex (fun x => p)) (at level 200, x ident, right associativity) : type_scope. Notation "'exists' x : t , p" := (ex (fun x:t => p)) - (at level 200, x ident, right associativity, + (at level 200, x ident, right associativity, format "'[' 'exists' '/ ' x : t , '/ ' p ']'") : type_scope. @@ -165,14 +226,14 @@ End universal_quantification. (** [eq x y], or simply [x=y] expresses the equality of [x] and [y]. Both [x] and [y] must belong to the same type [A]. The definition is inductive and states the reflexivity of the equality. - The others properties (symmetry, transitivity, replacement of + The others properties (symmetry, transitivity, replacement of equals by equals) are proved below. The type of [x] and [y] can be made explicit using the notation [x = y :> A]. This is Leibniz equality as it expresses that [x] and [y] are equal iff every property on [A] which is true of [x] is also true of [y] *) Inductive eq (A:Type) (x:A) : A -> Prop := - refl_equal : x = x :>A + refl_equal : x = x :>A where "x = y :> A" := (@eq A x y) : type_scope. @@ -222,7 +283,7 @@ Section Logic_lemmas. Proof. red in |- *; intros h1 h2; apply h1; destruct h2; trivial. Qed. - + Definition sym_equal := sym_eq. Definition sym_not_equal := sym_not_eq. Definition trans_equal := trans_eq. @@ -233,12 +294,12 @@ Section Logic_lemmas. forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y:A, y = x -> P y. intros A x P H y H0; elim sym_eq with (1 := H0); assumption. Defined. - + Definition eq_rec_r : forall (A:Type) (x:A) (P:A -> Set), P x -> forall y:A, y = x -> P y. intros A x P H y H0; elim sym_eq with (1 := H0); assumption. Defined. - + Definition eq_rect_r : forall (A:Type) (x:A) (P:A -> Type), P x -> forall y:A, y = x -> P y. intros A x P H y H0; elim sym_eq with (1 := H0); assumption. @@ -246,14 +307,14 @@ Section Logic_lemmas. End Logic_lemmas. Theorem f_equal2 : - forall (A1 A2 B:Type) (f:A1 -> A2 -> B) (x1 y1:A1) + forall (A1 A2 B:Type) (f:A1 -> A2 -> B) (x1 y1:A1) (x2 y2:A2), x1 = y1 -> x2 = y2 -> f x1 x2 = f y1 y2. Proof. destruct 1; destruct 1; reflexivity. Qed. Theorem f_equal3 : - forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) (x1 y1:A1) + forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) (x1 y1:A1) (x2 y2:A2) (x3 y3:A3), x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3. Proof. @@ -261,7 +322,7 @@ Proof. Qed. Theorem f_equal4 : - forall (A1 A2 A3 A4 B:Type) (f:A1 -> A2 -> A3 -> A4 -> B) + forall (A1 A2 A3 A4 B:Type) (f:A1 -> A2 -> A3 -> A4 -> B) (x1 y1:A1) (x2 y2:A2) (x3 y3:A3) (x4 y4:A4), x1 = y1 -> x2 = y2 -> x3 = y3 -> x4 = y4 -> f x1 x2 x3 x4 = f y1 y2 y3 y4. Proof. @@ -295,7 +356,7 @@ Definition uniqueness (A:Type) (P:A->Prop) := forall x y, P x -> P y -> x = y. Notation "'exists' ! x , P" := (ex (unique (fun x => P))) (at level 200, x ident, right associativity, format "'[' 'exists' ! '/ ' x , '/ ' P ']'") : type_scope. -Notation "'exists' ! x : A , P" := +Notation "'exists' ! x : A , P" := (ex (unique (fun x:A => P))) (at level 200, x ident, right associativity, format "'[' 'exists' ! '/ ' x : A , '/ ' P ']'") : type_scope. @@ -305,15 +366,47 @@ Lemma unique_existence : forall (A:Type) (P:A->Prop), Proof. intros A P; split. intros ((x,Hx),Huni); exists x; red; auto. - intros (x,(Hx,Huni)); split. + intros (x,(Hx,Huni)); split. exists x; assumption. intros x' x'' Hx' Hx''; transitivity x. symmetry; auto. auto. Qed. -(** Being inhabited *) +(** * Being inhabited *) + +(** The predicate [inhabited] can be used in different contexts. If [A] is + thought as a type, [inhabited A] states that [A] is inhabited. If [A] is + thought as a computationally relevant proposition, then + [inhabited A] weakens [A] so as to hide its computational meaning. + The so-weakened proof remains computationally relevant but only in + a propositional context. +*) Inductive inhabited (A:Type) : Prop := inhabits : A -> inhabited A. Hint Resolve inhabits: core. + +Lemma exists_inhabited : forall (A:Type) (P:A->Prop), + (exists x, P x) -> inhabited A. +Proof. + destruct 1; auto. +Qed. + +(** Declaration of stepl and stepr for eq and iff *) + +Lemma eq_stepl : forall (A : Type) (x y z : A), x = y -> x = z -> z = y. +Proof. +intros A x y z H1 H2. rewrite <- H2; exact H1. +Qed. + +Declare Left Step eq_stepl. +Declare Right Step trans_eq. + +Lemma iff_stepl : forall A B C : Prop, (A <-> B) -> (A <-> C) -> (C <-> B). +Proof. +intros; tauto. +Qed. + +Declare Left Step iff_stepl. +Declare Right Step iff_trans. |