summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetWeakInterface.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FSetWeakInterface.v')
-rw-r--r--theories/FSets/FSetWeakInterface.v251
1 files changed, 0 insertions, 251 deletions
diff --git a/theories/FSets/FSetWeakInterface.v b/theories/FSets/FSetWeakInterface.v
deleted file mode 100644
index a281ce22..00000000
--- a/theories/FSets/FSetWeakInterface.v
+++ /dev/null
@@ -1,251 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* $Id: FSetWeakInterface.v 8820 2006-05-15 11:44:05Z letouzey $ *)
-
-(** * Finite sets library *)
-
-(** Set interfaces for types with only a decidable equality, but no ordering *)
-
-Require Export Bool.
-Require Export DecidableType.
-Set Implicit Arguments.
-Unset Strict Implicit.
-
-(** Compatibility of a boolean function with respect to an equality. *)
-Definition compat_bool (A:Set)(eqA: A->A->Prop)(f: A-> bool) :=
- forall x y : A, eqA x y -> f x = f y.
-
-(** Compatibility of a predicate with respect to an equality. *)
-Definition compat_P (A:Set)(eqA: A->A->Prop)(P : A -> Prop) :=
- forall x y : A, eqA x y -> P x -> P y.
-
-Hint Unfold compat_bool compat_P.
-
-(** * Non-dependent signature
-
- Signature [S] presents sets as purely informative programs
- together with axioms *)
-
-Module Type S.
-
- Declare Module E : DecidableType.
- Definition elt := E.t.
-
- Parameter t : Set. (** the abstract type of sets *)
-
- (** Logical predicates *)
- Parameter In : elt -> t -> Prop.
- Definition Equal s s' := forall a : elt, In a s <-> In a s'.
- Definition Subset s s' := forall a : elt, In a s -> In a s'.
- Definition Empty s := forall a : elt, ~ In a s.
- Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
- Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
-
- Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
- Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).
-
- Parameter empty : t.
- (** The empty set. *)
-
- Parameter is_empty : t -> bool.
- (** Test whether a set is empty or not. *)
-
- Parameter mem : elt -> t -> bool.
- (** [mem x s] tests whether [x] belongs to the set [s]. *)
-
- Parameter add : elt -> t -> t.
- (** [add x s] returns a set containing all elements of [s],
- plus [x]. If [x] was already in [s], [s] is returned unchanged. *)
-
- Parameter singleton : elt -> t.
- (** [singleton x] returns the one-element set containing only [x]. *)
-
- Parameter remove : elt -> t -> t.
- (** [remove x s] returns a set containing all elements of [s],
- except [x]. If [x] was not in [s], [s] is returned unchanged. *)
-
- Parameter union : t -> t -> t.
- (** Set union. *)
-
- Parameter inter : t -> t -> t.
- (** Set intersection. *)
-
- Parameter diff : t -> t -> t.
- (** Set difference. *)
-
- Parameter equal : t -> t -> bool.
- (** [equal s1 s2] tests whether the sets [s1] and [s2] are
- equal, that is, contain equal elements. *)
-
- Parameter subset : t -> t -> bool.
- (** [subset s1 s2] tests whether the set [s1] is a subset of
- the set [s2]. *)
-
- (** Coq comment: [iter] is useless in a purely functional world *)
- (** iter: (elt -> unit) -> set -> unit. i*)
- (** [iter f s] applies [f] in turn to all elements of [s].
- The order in which the elements of [s] are presented to [f]
- is unspecified. *)
-
- Parameter fold : forall A : Set, (elt -> A -> A) -> t -> A -> A.
- (** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)],
- where [x1 ... xN] are the elements of [s].
- The order in which elements of [s] are presented to [f] is
- unspecified. *)
-
- Parameter for_all : (elt -> bool) -> t -> bool.
- (** [for_all p s] checks if all elements of the set
- satisfy the predicate [p]. *)
-
- Parameter exists_ : (elt -> bool) -> t -> bool.
- (** [exists p s] checks if at least one element of
- the set satisfies the predicate [p]. *)
-
- Parameter filter : (elt -> bool) -> t -> t.
- (** [filter p s] returns the set of all elements in [s]
- that satisfy predicate [p]. *)
-
- Parameter partition : (elt -> bool) -> t -> t * t.
- (** [partition p s] returns a pair of sets [(s1, s2)], where
- [s1] is the set of all the elements of [s] that satisfy the
- predicate [p], and [s2] is the set of all the elements of
- [s] that do not satisfy [p]. *)
-
- Parameter cardinal : t -> nat.
- (** Return the number of elements of a set. *)
- (** Coq comment: nat instead of int ... *)
-
- Parameter elements : t -> list elt.
- (** Return the list of all elements of the given set, in any order. *)
-
- Parameter choose : t -> option elt.
- (** Return one element of the given set, or raise [Not_found] if
- the set is empty. Which element is chosen is unspecified.
- Equal sets could return different elements. *)
- (** Coq comment: [Not_found] is represented by the option type *)
-
- Section Spec.
-
- Variable s s' : t.
- Variable x y : elt.
-
- (** Specification of [In] *)
- Parameter In_1 : E.eq x y -> In x s -> In y s.
-
- (** Specification of [mem] *)
- Parameter mem_1 : In x s -> mem x s = true.
- Parameter mem_2 : mem x s = true -> In x s.
-
- (** Specification of [equal] *)
- Parameter equal_1 : Equal s s' -> equal s s' = true.
- Parameter equal_2 : equal s s' = true -> Equal s s'.
-
- (** Specification of [subset] *)
- Parameter subset_1 : Subset s s' -> subset s s' = true.
- Parameter subset_2 : subset s s' = true -> Subset s s'.
-
- (** Specification of [empty] *)
- Parameter empty_1 : Empty empty.
-
- (** Specification of [is_empty] *)
- Parameter is_empty_1 : Empty s -> is_empty s = true.
- Parameter is_empty_2 : is_empty s = true -> Empty s.
-
- (** Specification of [add] *)
- Parameter add_1 : E.eq x y -> In y (add x s).
- Parameter add_2 : In y s -> In y (add x s).
- Parameter add_3 : ~ E.eq x y -> In y (add x s) -> In y s.
-
- (** Specification of [remove] *)
- Parameter remove_1 : E.eq x y -> ~ In y (remove x s).
- Parameter remove_2 : ~ E.eq x y -> In y s -> In y (remove x s).
- Parameter remove_3 : In y (remove x s) -> In y s.
-
- (** Specification of [singleton] *)
- Parameter singleton_1 : In y (singleton x) -> E.eq x y.
- Parameter singleton_2 : E.eq x y -> In y (singleton x).
-
- (** Specification of [union] *)
- Parameter union_1 : In x (union s s') -> In x s \/ In x s'.
- Parameter union_2 : In x s -> In x (union s s').
- Parameter union_3 : In x s' -> In x (union s s').
-
- (** Specification of [inter] *)
- Parameter inter_1 : In x (inter s s') -> In x s.
- Parameter inter_2 : In x (inter s s') -> In x s'.
- Parameter inter_3 : In x s -> In x s' -> In x (inter s s').
-
- (** Specification of [diff] *)
- Parameter diff_1 : In x (diff s s') -> In x s.
- Parameter diff_2 : In x (diff s s') -> ~ In x s'.
- Parameter diff_3 : In x s -> ~ In x s' -> In x (diff s s').
-
- (** Specification of [fold] *)
- Parameter fold_1 : forall (A : Set) (i : A) (f : elt -> A -> A),
- fold f s i = fold_left (fun a e => f e a) (elements s) i.
-
- (** Specification of [cardinal] *)
- Parameter cardinal_1 : cardinal s = length (elements s).
-
- Section Filter.
-
- Variable f : elt -> bool.
-
- (** Specification of [filter] *)
- Parameter filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s.
- Parameter filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true.
- Parameter filter_3 :
- compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
-
- (** Specification of [for_all] *)
- Parameter for_all_1 :
- compat_bool E.eq f ->
- For_all (fun x => f x = true) s -> for_all f s = true.
- Parameter for_all_2 :
- compat_bool E.eq f ->
- for_all f s = true -> For_all (fun x => f x = true) s.
-
- (** Specification of [exists] *)
- Parameter exists_1 :
- compat_bool E.eq f ->
- Exists (fun x => f x = true) s -> exists_ f s = true.
- Parameter exists_2 :
- compat_bool E.eq f ->
- exists_ f s = true -> Exists (fun x => f x = true) s.
-
- (** Specification of [partition] *)
- Parameter partition_1 :
- compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
- Parameter partition_2 :
- compat_bool E.eq f ->
- Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
-
- End Filter.
-
- (** Specification of [elements] *)
- Parameter elements_1 : In x s -> InA E.eq x (elements s).
- Parameter elements_2 : InA E.eq x (elements s) -> In x s.
- Parameter elements_3 : NoDupA E.eq (elements s).
-
- (** Specification of [choose] *)
- Parameter choose_1 : choose s = Some x -> In x s.
- Parameter choose_2 : choose s = None -> Empty s.
-
- End Spec.
-
- Hint Immediate In_1.
-
- Hint Resolve mem_1 mem_2 equal_1 equal_2 subset_1 subset_2 empty_1
- is_empty_1 is_empty_2 choose_1 choose_2 add_1 add_2 add_3 remove_1
- remove_2 remove_3 singleton_1 singleton_2 union_1 union_2 union_3 inter_1
- inter_2 inter_3 diff_1 diff_2 diff_3 filter_1 filter_2 filter_3 for_all_1
- for_all_2 exists_1 exists_2 partition_1 partition_2 elements_1 elements_2
- elements_3.
-
-End S.