diff options
Diffstat (limited to 'theories/FSets/FSetWeakInterface.v')
-rw-r--r-- | theories/FSets/FSetWeakInterface.v | 248 |
1 files changed, 248 insertions, 0 deletions
diff --git a/theories/FSets/FSetWeakInterface.v b/theories/FSets/FSetWeakInterface.v new file mode 100644 index 00000000..c1845494 --- /dev/null +++ b/theories/FSets/FSetWeakInterface.v @@ -0,0 +1,248 @@ +(***********************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) +(* \VV/ *************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(***********************************************************************) + +(* $Id: FSetWeakInterface.v 8641 2006-03-17 09:56:54Z letouzey $ *) + +(** * Finite sets library *) + +(** Set interfaces for types with only a decidable equality, but no ordering *) + +Require Export Bool. +Require Export DecidableType. +Set Implicit Arguments. +Unset Strict Implicit. + +(** Compatibility of a boolean function with respect to an equality. *) +Definition compat_bool (A:Set)(eqA: A->A->Prop)(f: A-> bool) := + forall x y : A, eqA x y -> f x = f y. + +(** Compatibility of a predicate with respect to an equality. *) +Definition compat_P (A:Set)(eqA: A->A->Prop)(P : A -> Prop) := + forall x y : A, eqA x y -> P x -> P y. + +Hint Unfold compat_bool compat_P. + +(** * Non-dependent signature + + Signature [S] presents sets as purely informative programs + together with axioms *) + +Module Type S. + + Declare Module E : DecidableType. + Definition elt := E.t. + + Parameter t : Set. (** the abstract type of sets *) + + (** Logical predicates *) + Parameter In : elt -> t -> Prop. + Definition Equal s s' := forall a : elt, In a s <-> In a s'. + Definition Subset s s' := forall a : elt, In a s -> In a s'. + Definition Empty s := forall a : elt, ~ In a s. + Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x. + Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x. + + Notation "s [=] t" := (Equal s t) (at level 70, no associativity). + Notation "s [<=] t" := (Subset s t) (at level 70, no associativity). + + Parameter empty : t. + (** The empty set. *) + + Parameter is_empty : t -> bool. + (** Test whether a set is empty or not. *) + + Parameter mem : elt -> t -> bool. + (** [mem x s] tests whether [x] belongs to the set [s]. *) + + Parameter add : elt -> t -> t. + (** [add x s] returns a set containing all elements of [s], + plus [x]. If [x] was already in [s], [s] is returned unchanged. *) + + Parameter singleton : elt -> t. + (** [singleton x] returns the one-element set containing only [x]. *) + + Parameter remove : elt -> t -> t. + (** [remove x s] returns a set containing all elements of [s], + except [x]. If [x] was not in [s], [s] is returned unchanged. *) + + Parameter union : t -> t -> t. + (** Set union. *) + + Parameter inter : t -> t -> t. + (** Set intersection. *) + + Parameter diff : t -> t -> t. + (** Set difference. *) + + Parameter equal : t -> t -> bool. + (** [equal s1 s2] tests whether the sets [s1] and [s2] are + equal, that is, contain equal elements. *) + + Parameter subset : t -> t -> bool. + (** [subset s1 s2] tests whether the set [s1] is a subset of + the set [s2]. *) + + (** Coq comment: [iter] is useless in a purely functional world *) + (** iter: (elt -> unit) -> set -> unit. i*) + (** [iter f s] applies [f] in turn to all elements of [s]. + The order in which the elements of [s] are presented to [f] + is unspecified. *) + + Parameter fold : forall A : Set, (elt -> A -> A) -> t -> A -> A. + (** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)], + where [x1 ... xN] are the elements of [s]. + The order in which elements of [s] are presented to [f] is + unspecified. *) + + Parameter for_all : (elt -> bool) -> t -> bool. + (** [for_all p s] checks if all elements of the set + satisfy the predicate [p]. *) + + Parameter exists_ : (elt -> bool) -> t -> bool. + (** [exists p s] checks if at least one element of + the set satisfies the predicate [p]. *) + + Parameter filter : (elt -> bool) -> t -> t. + (** [filter p s] returns the set of all elements in [s] + that satisfy predicate [p]. *) + + Parameter partition : (elt -> bool) -> t -> t * t. + (** [partition p s] returns a pair of sets [(s1, s2)], where + [s1] is the set of all the elements of [s] that satisfy the + predicate [p], and [s2] is the set of all the elements of + [s] that do not satisfy [p]. *) + + Parameter cardinal : t -> nat. + (** Return the number of elements of a set. *) + (** Coq comment: nat instead of int ... *) + + Parameter elements : t -> list elt. + (** Return the list of all elements of the given set, in any order. *) + + Parameter choose : t -> option elt. + (** Return one element of the given set, or raise [Not_found] if + the set is empty. Which element is chosen is unspecified. + Equal sets could return different elements. *) + (** Coq comment: [Not_found] is represented by the option type *) + + Section Spec. + + Variable s s' s'' : t. + Variable x y z : elt. + + (** Specification of [In] *) + Parameter In_1 : E.eq x y -> In x s -> In y s. + + (** Specification of [mem] *) + Parameter mem_1 : In x s -> mem x s = true. + Parameter mem_2 : mem x s = true -> In x s. + + (** Specification of [equal] *) + Parameter equal_1 : Equal s s' -> equal s s' = true. + Parameter equal_2 : equal s s' = true -> Equal s s'. + + (** Specification of [subset] *) + Parameter subset_1 : Subset s s' -> subset s s' = true. + Parameter subset_2 : subset s s' = true -> Subset s s'. + + (** Specification of [empty] *) + Parameter empty_1 : Empty empty. + + (** Specification of [is_empty] *) + Parameter is_empty_1 : Empty s -> is_empty s = true. + Parameter is_empty_2 : is_empty s = true -> Empty s. + + (** Specification of [add] *) + Parameter add_1 : E.eq x y -> In y (add x s). + Parameter add_2 : In y s -> In y (add x s). + Parameter add_3 : ~ E.eq x y -> In y (add x s) -> In y s. + + (** Specification of [remove] *) + Parameter remove_1 : E.eq x y -> ~ In y (remove x s). + Parameter remove_2 : ~ E.eq x y -> In y s -> In y (remove x s). + Parameter remove_3 : In y (remove x s) -> In y s. + + (** Specification of [singleton] *) + Parameter singleton_1 : In y (singleton x) -> E.eq x y. + Parameter singleton_2 : E.eq x y -> In y (singleton x). + + (** Specification of [union] *) + Parameter union_1 : In x (union s s') -> In x s \/ In x s'. + Parameter union_2 : In x s -> In x (union s s'). + Parameter union_3 : In x s' -> In x (union s s'). + + (** Specification of [inter] *) + Parameter inter_1 : In x (inter s s') -> In x s. + Parameter inter_2 : In x (inter s s') -> In x s'. + Parameter inter_3 : In x s -> In x s' -> In x (inter s s'). + + (** Specification of [diff] *) + Parameter diff_1 : In x (diff s s') -> In x s. + Parameter diff_2 : In x (diff s s') -> ~ In x s'. + Parameter diff_3 : In x s -> ~ In x s' -> In x (diff s s'). + + (** Specification of [fold] *) + Parameter fold_1 : forall (A : Set) (i : A) (f : elt -> A -> A), + fold f s i = fold_left (fun a e => f e a) (elements s) i. + + (** Specification of [cardinal] *) + Parameter cardinal_1 : cardinal s = length (elements s). + + Section Filter. + + Variable f : elt -> bool. + + (** Specification of [filter] *) + Parameter filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s. + Parameter filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true. + Parameter filter_3 : + compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s). + + (** Specification of [for_all] *) + Parameter for_all_1 : + compat_bool E.eq f -> + For_all (fun x => f x = true) s -> for_all f s = true. + Parameter for_all_2 : + compat_bool E.eq f -> + for_all f s = true -> For_all (fun x => f x = true) s. + + (** Specification of [exists] *) + Parameter exists_1 : + compat_bool E.eq f -> + Exists (fun x => f x = true) s -> exists_ f s = true. + Parameter exists_2 : + compat_bool E.eq f -> + exists_ f s = true -> Exists (fun x => f x = true) s. + + (** Specification of [partition] *) + Parameter partition_1 : + compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s). + Parameter partition_2 : + compat_bool E.eq f -> + Equal (snd (partition f s)) (filter (fun x => negb (f x)) s). + + (** Specification of [elements] *) + Parameter elements_1 : In x s -> InA E.eq x (elements s). + Parameter elements_2 : InA E.eq x (elements s) -> In x s. + + (** Specification of [choose] *) + Parameter choose_1 : choose s = Some x -> In x s. + Parameter choose_2 : choose s = None -> Empty s. + + End Filter. + End Spec. + + Hint Immediate In_1. + + Hint Resolve mem_1 mem_2 equal_1 equal_2 subset_1 subset_2 empty_1 + is_empty_1 is_empty_2 choose_1 choose_2 add_1 add_2 add_3 remove_1 + remove_2 remove_3 singleton_1 singleton_2 union_1 union_2 union_3 inter_1 + inter_2 inter_3 diff_1 diff_2 diff_3 filter_1 filter_2 filter_3 for_all_1 + for_all_2 exists_1 exists_2 partition_1 partition_2 elements_1 elements_2. + +End S. |