summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetToFiniteSet.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FSetToFiniteSet.v')
-rw-r--r--theories/FSets/FSetToFiniteSet.v27
1 files changed, 12 insertions, 15 deletions
diff --git a/theories/FSets/FSetToFiniteSet.v b/theories/FSets/FSetToFiniteSet.v
index 56a66261..01138270 100644
--- a/theories/FSets/FSetToFiniteSet.v
+++ b/theories/FSets/FSetToFiniteSet.v
@@ -6,24 +6,21 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* Finite sets library.
- * Authors: Pierre Letouzey and Jean-Christophe Filliâtre
- * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
- * 91405 Orsay, France *)
+(* $Id$ *)
-(* $Id: FSetToFiniteSet.v 11735 2009-01-02 17:22:31Z herbelin $ *)
+(** * Finite sets library : conversion to old [Finite_sets] *)
Require Import Ensembles Finite_sets.
Require Import FSetInterface FSetProperties OrderedTypeEx DecidableTypeEx.
-(** * Going from [FSets] with usual Leibniz equality
+(** * Going from [FSets] with usual Leibniz equality
to the good old [Ensembles] and [Finite_sets] theory. *)
Module WS_to_Finite_set (U:UsualDecidableType)(M: WSfun U).
Module MP:= WProperties_fun U M.
Import M MP FM Ensembles Finite_sets.
- Definition mkEns : M.t -> Ensemble M.elt :=
+ Definition mkEns : M.t -> Ensemble M.elt :=
fun s x => M.In x s.
Notation " !! " := mkEns.
@@ -115,11 +112,11 @@ Module WS_to_Finite_set (U:UsualDecidableType)(M: WSfun U).
Proof.
intro s; pattern s; apply set_induction; clear s; intros.
intros; replace (!!s) with (Empty_set elt); auto with sets.
- symmetry; apply Extensionality_Ensembles.
+ symmetry; apply Extensionality_Ensembles.
apply Empty_Empty_set; auto.
replace (!!s') with (Add _ (!!s) x).
constructor 2; auto.
- symmetry; apply Extensionality_Ensembles.
+ symmetry; apply Extensionality_Ensembles.
apply Add_Add; auto.
Qed.
@@ -128,18 +125,18 @@ Module WS_to_Finite_set (U:UsualDecidableType)(M: WSfun U).
intro s; pattern s; apply set_induction; clear s; intros.
intros; replace (!!s) with (Empty_set elt); auto with sets.
rewrite cardinal_1; auto with sets.
- symmetry; apply Extensionality_Ensembles.
+ symmetry; apply Extensionality_Ensembles.
apply Empty_Empty_set; auto.
replace (!!s') with (Add _ (!!s) x).
- rewrite (cardinal_2 H0 H1); auto with sets.
- symmetry; apply Extensionality_Ensembles.
+ rewrite (cardinal_2 H0 H1); auto with sets.
+ symmetry; apply Extensionality_Ensembles.
apply Add_Add; auto.
Qed.
- (** we can even build a function from Finite Ensemble to FSet
+ (** we can even build a function from Finite Ensemble to FSet
... at least in Prop. *)
- Lemma Ens_to_FSet : forall e : Ensemble M.elt, Finite _ e ->
+ Lemma Ens_to_FSet : forall e : Ensemble M.elt, Finite _ e ->
exists s:M.t, !!s === e.
Proof.
induction 1.
@@ -147,7 +144,7 @@ Module WS_to_Finite_set (U:UsualDecidableType)(M: WSfun U).
apply empty_Empty_Set.
destruct IHFinite as (s,Hs).
exists (M.add x s).
- apply Extensionality_Ensembles in Hs.
+ apply Extensionality_Ensembles in Hs.
rewrite <- Hs.
apply add_Add.
Qed.