diff options
Diffstat (limited to 'theories/FSets/FSetFullAVL.v')
-rw-r--r-- | theories/FSets/FSetFullAVL.v | 1133 |
1 files changed, 0 insertions, 1133 deletions
diff --git a/theories/FSets/FSetFullAVL.v b/theories/FSets/FSetFullAVL.v deleted file mode 100644 index a2d8e681..00000000 --- a/theories/FSets/FSetFullAVL.v +++ /dev/null @@ -1,1133 +0,0 @@ -(***********************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) -(* \VV/ *************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(***********************************************************************) - -(* Finite sets library. - * Authors: Pierre Letouzey and Jean-Christophe Filliâtre - * Institution: LRI, CNRS UMR 8623 - Université Paris Sud - * 91405 Orsay, France *) - -(* $Id: FSetFullAVL.v 11699 2008-12-18 11:49:08Z letouzey $ *) - -(** * FSetFullAVL - - This file contains some complements to [FSetAVL]. - - - Functor [AvlProofs] proves that trees of [FSetAVL] are not only - binary search trees, but moreover well-balanced ones. This is done - by proving that all operations preserve the balancing. - - - Functor [OcamlOps] contains variants of [union], [subset], - [compare] and [equal] that are faithful to the original ocaml codes, - while the versions in FSetAVL have been adapted to perform only - structural recursive code. - - - Finally, we pack the previous elements in a [Make] functor - similar to the one of [FSetAVL], but richer. -*) - -Require Import Recdef FSetInterface FSetList ZArith Int FSetAVL. - -Set Implicit Arguments. -Unset Strict Implicit. - -Module AvlProofs (Import I:Int)(X:OrderedType). -Module Import Raw := Raw I X. -Import Raw.Proofs. -Module Import II := MoreInt I. -Open Local Scope pair_scope. -Open Local Scope Int_scope. - -(** * AVL trees *) - -(** [avl s] : [s] is a properly balanced AVL tree, - i.e. for any node the heights of the two children - differ by at most 2 *) - -Inductive avl : tree -> Prop := - | RBLeaf : avl Leaf - | RBNode : forall x l r h, avl l -> avl r -> - -(2) <= height l - height r <= 2 -> - h = max (height l) (height r) + 1 -> - avl (Node l x r h). - -(** * Automation and dedicated tactics *) - -Hint Constructors avl. - -(** A tactic for cleaning hypothesis after use of functional induction. *) - -Ltac clearf := - match goal with - | H : (@Logic.eq (Compare _ _ _ _) _ _) |- _ => clear H; clearf - | H : (@Logic.eq (sumbool _ _) _ _) |- _ => clear H; clearf - | _ => idtac - end. - -(** Tactics about [avl] *) - -Lemma height_non_negative : forall s : tree, avl s -> height s >= 0. -Proof. - induction s; simpl; intros; auto with zarith. - inv avl; intuition; omega_max. -Qed. -Implicit Arguments height_non_negative. - -(** When [H:avl r], typing [avl_nn H] or [avl_nn r] adds [height r>=0] *) - -Ltac avl_nn_hyp H := - let nz := fresh "nz" in assert (nz := height_non_negative H). - -Ltac avl_nn h := - let t := type of h in - match type of t with - | Prop => avl_nn_hyp h - | _ => match goal with H : avl h |- _ => avl_nn_hyp H end - end. - -(* Repeat the previous tactic. - Drawback: need to clear the [avl _] hyps ... Thank you Ltac *) - -Ltac avl_nns := - match goal with - | H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns - | _ => idtac - end. - -(** Results about [height] *) - -Lemma height_0 : forall s, avl s -> height s = 0 -> s = Leaf. -Proof. - destruct 1; intuition; simpl in *. - avl_nns; simpl in *; elimtype False; omega_max. -Qed. - -(** * Results about [avl] *) - -Lemma avl_node : - forall x l r, avl l -> avl r -> - -(2) <= height l - height r <= 2 -> - avl (Node l x r (max (height l) (height r) + 1)). -Proof. - intros; auto. -Qed. -Hint Resolve avl_node. - - -(** empty *) - -Lemma empty_avl : avl empty. -Proof. - auto. -Qed. - -(** singleton *) - -Lemma singleton_avl : forall x : elt, avl (singleton x). -Proof. - unfold singleton; intro. - constructor; auto; try red; simpl; omega_max. -Qed. - -(** create *) - -Lemma create_avl : - forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 -> - avl (create l x r). -Proof. - unfold create; auto. -Qed. - -Lemma create_height : - forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 -> - height (create l x r) = max (height l) (height r) + 1. -Proof. - unfold create; auto. -Qed. - -(** bal *) - -Lemma bal_avl : forall l x r, avl l -> avl r -> - -(3) <= height l - height r <= 3 -> avl (bal l x r). -Proof. - intros l x r; functional induction bal l x r; intros; clearf; - inv avl; simpl in *; - match goal with |- avl (assert_false _ _ _) => avl_nns - | _ => repeat apply create_avl; simpl in *; auto - end; omega_max. -Qed. - -Lemma bal_height_1 : forall l x r, avl l -> avl r -> - -(3) <= height l - height r <= 3 -> - 0 <= height (bal l x r) - max (height l) (height r) <= 1. -Proof. - intros l x r; functional induction bal l x r; intros; clearf; - inv avl; avl_nns; simpl in *; omega_max. -Qed. - -Lemma bal_height_2 : - forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 -> - height (bal l x r) == max (height l) (height r) +1. -Proof. - intros l x r; functional induction bal l x r; intros; clearf; - inv avl; simpl in *; omega_max. -Qed. - -Ltac omega_bal := match goal with - | H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?r ] => - generalize (bal_height_1 x H H') (bal_height_2 x H H'); - omega_max - end. - -(** add *) - -Lemma add_avl_1 : forall s x, avl s -> - avl (add x s) /\ 0 <= height (add x s) - height s <= 1. -Proof. - intros s x; functional induction (add x s); subst;intros; inv avl; simpl in *. - intuition; try constructor; simpl; auto; try omega_max. - (* LT *) - destruct IHt; auto. - split. - apply bal_avl; auto; omega_max. - omega_bal. - (* EQ *) - intuition; omega_max. - (* GT *) - destruct IHt; auto. - split. - apply bal_avl; auto; omega_max. - omega_bal. -Qed. - -Lemma add_avl : forall s x, avl s -> avl (add x s). -Proof. - intros; destruct (add_avl_1 x H); auto. -Qed. -Hint Resolve add_avl. - -(** join *) - -Lemma join_avl_1 : forall l x r, avl l -> avl r -> avl (join l x r) /\ - 0<= height (join l x r) - max (height l) (height r) <= 1. -Proof. - join_tac. - - split; simpl; auto. - destruct (add_avl_1 x H0). - avl_nns; omega_max. - set (l:=Node ll lx lr lh) in *. - split; auto. - destruct (add_avl_1 x H). - simpl (height Leaf). - avl_nns; omega_max. - - inversion_clear H. - assert (height (Node rl rx rr rh) = rh); auto. - set (r := Node rl rx rr rh) in *; clearbody r. - destruct (Hlr x r H2 H0); clear Hrl Hlr. - set (j := join lr x r) in *; clearbody j. - simpl. - assert (-(3) <= height ll - height j <= 3) by omega_max. - split. - apply bal_avl; auto. - omega_bal. - - inversion_clear H0. - assert (height (Node ll lx lr lh) = lh); auto. - set (l := Node ll lx lr lh) in *; clearbody l. - destruct (Hrl H H1); clear Hrl Hlr. - set (j := join l x rl) in *; clearbody j. - simpl. - assert (-(3) <= height j - height rr <= 3) by omega_max. - split. - apply bal_avl; auto. - omega_bal. - - clear Hrl Hlr. - assert (height (Node ll lx lr lh) = lh); auto. - assert (height (Node rl rx rr rh) = rh); auto. - set (l := Node ll lx lr lh) in *; clearbody l. - set (r := Node rl rx rr rh) in *; clearbody r. - assert (-(2) <= height l - height r <= 2) by omega_max. - split. - apply create_avl; auto. - rewrite create_height; auto; omega_max. -Qed. - -Lemma join_avl : forall l x r, avl l -> avl r -> avl (join l x r). -Proof. - intros; destruct (join_avl_1 x H H0); auto. -Qed. -Hint Resolve join_avl. - -(** remove_min *) - -Lemma remove_min_avl_1 : forall l x r h, avl (Node l x r h) -> - avl (remove_min l x r)#1 /\ - 0 <= height (Node l x r h) - height (remove_min l x r)#1 <= 1. -Proof. - intros l x r; functional induction (remove_min l x r); subst;simpl in *; intros. - inv avl; simpl in *; split; auto. - avl_nns; omega_max. - inversion_clear H. - rewrite e0 in IHp;simpl in IHp;destruct (IHp _x); auto. - split; simpl in *. - apply bal_avl; auto; omega_max. - omega_bal. -Qed. - -Lemma remove_min_avl : forall l x r h, avl (Node l x r h) -> - avl (remove_min l x r)#1. -Proof. - intros; destruct (remove_min_avl_1 H); auto. -Qed. - -(** merge *) - -Lemma merge_avl_1 : forall s1 s2, avl s1 -> avl s2 -> - -(2) <= height s1 - height s2 <= 2 -> - avl (merge s1 s2) /\ - 0<= height (merge s1 s2) - max (height s1) (height s2) <=1. -Proof. - intros s1 s2; functional induction (merge s1 s2); intros; - try factornode _x _x0 _x1 _x2 as s1. - simpl; split; auto; avl_nns; omega_max. - simpl; split; auto; avl_nns; simpl in *; omega_max. - generalize (remove_min_avl_1 H0). - rewrite e1; destruct 1. - split. - apply bal_avl; auto. - simpl; omega_max. - simpl in *; omega_bal. -Qed. - -Lemma merge_avl : forall s1 s2, avl s1 -> avl s2 -> - -(2) <= height s1 - height s2 <= 2 -> avl (merge s1 s2). -Proof. - intros; destruct (merge_avl_1 H H0 H1); auto. -Qed. - - -(** remove *) - -Lemma remove_avl_1 : forall s x, avl s -> - avl (remove x s) /\ 0 <= height s - height (remove x s) <= 1. -Proof. - intros s x; functional induction (remove x s); intros. - intuition; omega_max. - (* LT *) - inv avl. - destruct (IHt H0). - split. - apply bal_avl; auto. - omega_max. - omega_bal. - (* EQ *) - inv avl. - generalize (merge_avl_1 H0 H1 H2). - intuition omega_max. - (* GT *) - inv avl. - destruct (IHt H1). - split. - apply bal_avl; auto. - omega_max. - omega_bal. -Qed. - -Lemma remove_avl : forall s x, avl s -> avl (remove x s). -Proof. - intros; destruct (remove_avl_1 x H); auto. -Qed. -Hint Resolve remove_avl. - -(** concat *) - -Lemma concat_avl : forall s1 s2, avl s1 -> avl s2 -> avl (concat s1 s2). -Proof. - intros s1 s2; functional induction (concat s1 s2); auto. - intros; apply join_avl; auto. - generalize (remove_min_avl H0); rewrite e1; simpl; auto. -Qed. -Hint Resolve concat_avl. - -(** split *) - -Lemma split_avl : forall s x, avl s -> - avl (split x s)#l /\ avl (split x s)#r. -Proof. - intros s x; functional induction (split x s); simpl; auto. - rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition. - simpl; inversion_clear 1; auto. - rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition. -Qed. - -(** inter *) - -Lemma inter_avl : forall s1 s2, avl s1 -> avl s2 -> avl (inter s1 s2). -Proof. - intros s1 s2; functional induction inter s1 s2; auto; intros A1 A2; - generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1; - inv avl; auto. -Qed. - -(** diff *) - -Lemma diff_avl : forall s1 s2, avl s1 -> avl s2 -> avl (diff s1 s2). -Proof. - intros s1 s2; functional induction diff s1 s2; auto; intros A1 A2; - generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1; - inv avl; auto. -Qed. - -(** union *) - -Lemma union_avl : forall s1 s2, avl s1 -> avl s2 -> avl (union s1 s2). -Proof. - intros s1 s2; functional induction union s1 s2; auto; intros A1 A2; - generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1; - inv avl; auto. -Qed. - -(** filter *) - -Lemma filter_acc_avl : forall f s acc, avl s -> avl acc -> - avl (filter_acc f acc s). -Proof. - induction s; simpl; auto. - intros. - inv avl. - destruct (f t); auto. -Qed. -Hint Resolve filter_acc_avl. - -Lemma filter_avl : forall f s, avl s -> avl (filter f s). -Proof. - unfold filter; intros; apply filter_acc_avl; auto. -Qed. - -(** partition *) - -Lemma partition_acc_avl_1 : forall f s acc, avl s -> - avl acc#1 -> avl (partition_acc f acc s)#1. -Proof. - induction s; simpl; auto. - destruct acc as [acct accf]; simpl in *. - intros. - inv avl. - apply IHs2; auto. - apply IHs1; auto. - destruct (f t); simpl; auto. -Qed. - -Lemma partition_acc_avl_2 : forall f s acc, avl s -> - avl acc#2 -> avl (partition_acc f acc s)#2. -Proof. - induction s; simpl; auto. - destruct acc as [acct accf]; simpl in *. - intros. - inv avl. - apply IHs2; auto. - apply IHs1; auto. - destruct (f t); simpl; auto. -Qed. - -Lemma partition_avl_1 : forall f s, avl s -> avl (partition f s)#1. -Proof. - unfold partition; intros; apply partition_acc_avl_1; auto. -Qed. - -Lemma partition_avl_2 : forall f s, avl s -> avl (partition f s)#2. -Proof. - unfold partition; intros; apply partition_acc_avl_2; auto. -Qed. - -End AvlProofs. - - -Module OcamlOps (Import I:Int)(X:OrderedType). -Module Import AvlProofs := AvlProofs I X. -Import Raw. -Import Raw.Proofs. -Import II. -Open Local Scope pair_scope. -Open Local Scope nat_scope. - -(** Properties of cardinal *) - -Lemma bal_cardinal : forall l x r, - cardinal (bal l x r) = S (cardinal l + cardinal r). -Proof. - intros l x r; functional induction bal l x r; intros; clearf; - simpl; auto with arith; romega with *. -Qed. - -Lemma add_cardinal : forall x s, - cardinal (add x s) <= S (cardinal s). -Proof. - intros; functional induction add x s; simpl; auto with arith; - rewrite bal_cardinal; romega with *. -Qed. - -Lemma join_cardinal : forall l x r, - cardinal (join l x r) <= S (cardinal l + cardinal r). -Proof. - join_tac; auto with arith. - simpl; apply add_cardinal. - simpl; destruct X.compare; simpl; auto with arith. - generalize (bal_cardinal (add x ll) lx lr) (add_cardinal x ll); - romega with *. - generalize (bal_cardinal ll lx (add x lr)) (add_cardinal x lr); - romega with *. - generalize (bal_cardinal ll lx (join lr x (Node rl rx rr rh))) - (Hlr x (Node rl rx rr rh)); simpl; romega with *. - simpl S in *; generalize (bal_cardinal (join (Node ll lx lr lh) x rl) rx rr). - romega with *. -Qed. - -Lemma split_cardinal_1 : forall x s, - (cardinal (split x s)#l <= cardinal s)%nat. -Proof. - intros x s; functional induction split x s; simpl; auto. - rewrite e1 in IHt; simpl in *. - romega with *. - romega with *. - rewrite e1 in IHt; simpl in *. - generalize (@join_cardinal l y rl); romega with *. -Qed. - -Lemma split_cardinal_2 : forall x s, - (cardinal (split x s)#r <= cardinal s)%nat. -Proof. - intros x s; functional induction split x s; simpl; auto. - rewrite e1 in IHt; simpl in *. - generalize (@join_cardinal rl y r); romega with *. - romega with *. - rewrite e1 in IHt; simpl in *; romega with *. -Qed. - -(** * [ocaml_union], an union faithful to the original ocaml code *) - -Definition cardinal2 (s:t*t) := (cardinal s#1 + cardinal s#2)%nat. - -Ltac ocaml_union_tac := - intros; unfold cardinal2; simpl fst in *; simpl snd in *; - match goal with H: split ?x ?s = _ |- _ => - generalize (split_cardinal_1 x s) (split_cardinal_2 x s); - rewrite H; simpl; romega with * - end. - -Import Logic. (* Unhide eq, otherwise Function complains. *) - -Function ocaml_union (s : t * t) { measure cardinal2 s } : t := - match s with - | (Leaf, Leaf) => s#2 - | (Leaf, Node _ _ _ _) => s#2 - | (Node _ _ _ _, Leaf) => s#1 - | (Node l1 x1 r1 h1, Node l2 x2 r2 h2) => - if ge_lt_dec h1 h2 then - if eq_dec h2 1%I then add x2 s#1 else - let (l2',_,r2') := split x1 s#2 in - join (ocaml_union (l1,l2')) x1 (ocaml_union (r1,r2')) - else - if eq_dec h1 1%I then add x1 s#2 else - let (l1',_,r1') := split x2 s#1 in - join (ocaml_union (l1',l2)) x2 (ocaml_union (r1',r2)) - end. -Proof. -abstract ocaml_union_tac. -abstract ocaml_union_tac. -abstract ocaml_union_tac. -abstract ocaml_union_tac. -Defined. - -Lemma ocaml_union_in : forall s y, - bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 -> - (In y (ocaml_union s) <-> In y s#1 \/ In y s#2). -Proof. - intros s; functional induction ocaml_union s; intros y B1 A1 B2 A2; - simpl fst in *; simpl snd in *; try clear e0 e1. - intuition_in. - intuition_in. - intuition_in. - (* add x2 s#1 *) - inv avl. - rewrite (height_0 H); [ | avl_nn l2; omega_max]. - rewrite (height_0 H0); [ | avl_nn r2; omega_max]. - rewrite add_in; intuition_in. - (* join (union (l1,l2')) x1 (union (r1,r2')) *) - generalize - (split_avl x1 A2) (split_bst x1 B2) - (split_in_1 x1 y B2) (split_in_2 x1 y B2). - rewrite e2; simpl. - destruct 1; destruct 1; inv avl; inv bst. - rewrite join_in, IHt, IHt0; auto. - do 2 (intro Eq; rewrite Eq; clear Eq). - case (X.compare y x1); intuition_in. - (* add x1 s#2 *) - inv avl. - rewrite (height_0 H3); [ | avl_nn l1; omega_max]. - rewrite (height_0 H4); [ | avl_nn r1; omega_max]. - rewrite add_in; auto; intuition_in. - (* join (union (l1',l2)) x1 (union (r1',r2)) *) - generalize - (split_avl x2 A1) (split_bst x2 B1) - (split_in_1 x2 y B1) (split_in_2 x2 y B1). - rewrite e2; simpl. - destruct 1; destruct 1; inv avl; inv bst. - rewrite join_in, IHt, IHt0; auto. - do 2 (intro Eq; rewrite Eq; clear Eq). - case (X.compare y x2); intuition_in. -Qed. - -Lemma ocaml_union_bst : forall s, - bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 -> bst (ocaml_union s). -Proof. - intros s; functional induction ocaml_union s; intros B1 A1 B2 A2; - simpl fst in *; simpl snd in *; try clear e0 e1; - try apply add_bst; auto. - (* join (union (l1,l2')) x1 (union (r1,r2')) *) - clear _x _x0; factornode l2 x2 r2 h2 as s2. - generalize (split_avl x1 A2) (split_bst x1 B2) - (@split_in_1 s2 x1)(@split_in_2 s2 x1). - rewrite e2; simpl. - destruct 1; destruct 1; intros. - inv bst; inv avl. - apply join_bst; auto. - intro y; rewrite ocaml_union_in, H3; intuition_in. - intro y; rewrite ocaml_union_in, H4; intuition_in. - (* join (union (l1',l2)) x1 (union (r1',r2)) *) - clear _x _x0; factornode l1 x1 r1 h1 as s1. - generalize (split_avl x2 A1) (split_bst x2 B1) - (@split_in_1 s1 x2)(@split_in_2 s1 x2). - rewrite e2; simpl. - destruct 1; destruct 1; intros. - inv bst; inv avl. - apply join_bst; auto. - intro y; rewrite ocaml_union_in, H3; intuition_in. - intro y; rewrite ocaml_union_in, H4; intuition_in. -Qed. - -Lemma ocaml_union_avl : forall s, - avl s#1 -> avl s#2 -> avl (ocaml_union s). -Proof. - intros s; functional induction ocaml_union s; - simpl fst in *; simpl snd in *; auto. - intros A1 A2; generalize (split_avl x1 A2); rewrite e2; simpl. - inv avl; destruct 1; auto. - intros A1 A2; generalize (split_avl x2 A1); rewrite e2; simpl. - inv avl; destruct 1; auto. -Qed. - -Lemma ocaml_union_alt : forall s, bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 -> - Equal (ocaml_union s) (union s#1 s#2). -Proof. - red; intros; rewrite ocaml_union_in, union_in; simpl; intuition. -Qed. - - -(** * [ocaml_subset], a subset faithful to the original ocaml code *) - -Function ocaml_subset (s:t*t) { measure cardinal2 s } : bool := - match s with - | (Leaf, _) => true - | (Node _ _ _ _, Leaf) => false - | (Node l1 x1 r1 h1, Node l2 x2 r2 h2) => - match X.compare x1 x2 with - | EQ _ => ocaml_subset (l1,l2) && ocaml_subset (r1,r2) - | LT _ => ocaml_subset (Node l1 x1 Leaf 0%I, l2) && ocaml_subset (r1,s#2) - | GT _ => ocaml_subset (Node Leaf x1 r1 0%I, r2) && ocaml_subset (l1,s#2) - end - end. - -Proof. - intros; unfold cardinal2; simpl; abstract romega with *. - intros; unfold cardinal2; simpl; abstract romega with *. - intros; unfold cardinal2; simpl; abstract romega with *. - intros; unfold cardinal2; simpl; abstract romega with *. - intros; unfold cardinal2; simpl; abstract romega with *. - intros; unfold cardinal2; simpl; abstract romega with *. -Defined. - -Lemma ocaml_subset_12 : forall s, - bst s#1 -> bst s#2 -> - (ocaml_subset s = true <-> Subset s#1 s#2). -Proof. - intros s; functional induction ocaml_subset s; simpl; - intros B1 B2; try clear e0. - intuition. - red; auto; inversion 1. - split; intros; try discriminate. - assert (H': In _x0 Leaf) by auto; inversion H'. - (**) - simpl in *; inv bst. - rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0. - unfold Subset; intuition_in. - assert (X.eq a x2) by order; intuition_in. - assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. - assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. - (**) - simpl in *; inv bst. - rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0. - unfold Subset; intuition_in. - assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. - assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. - (**) - simpl in *; inv bst. - rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0. - unfold Subset; intuition_in. - assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. - assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. -Qed. - -Lemma ocaml_subset_alt : forall s, bst s#1 -> bst s#2 -> - ocaml_subset s = subset s#1 s#2. -Proof. - intros. - generalize (ocaml_subset_12 H H0); rewrite <-subset_12 by auto. - destruct ocaml_subset; destruct subset; intuition. -Qed. - - - -(** [ocaml_compare], a compare faithful to the original ocaml code *) - -(** termination of [compare_aux] *) - -Fixpoint cardinal_e e := match e with - | End => 0 - | More _ s r => S (cardinal s + cardinal_e r) - end. - -Lemma cons_cardinal_e : forall s e, - cardinal_e (cons s e) = cardinal s + cardinal_e e. -Proof. - induction s; simpl; intros; auto. - rewrite IHs1; simpl; rewrite <- plus_n_Sm; auto with arith. -Qed. - -Definition cardinal_e_2 e := cardinal_e e#1 + cardinal_e e#2. - -Function ocaml_compare_aux - (e:enumeration*enumeration) { measure cardinal_e_2 e } : comparison := - match e with - | (End,End) => Eq - | (End,More _ _ _) => Lt - | (More _ _ _, End) => Gt - | (More x1 r1 e1, More x2 r2 e2) => - match X.compare x1 x2 with - | EQ _ => ocaml_compare_aux (cons r1 e1, cons r2 e2) - | LT _ => Lt - | GT _ => Gt - end - end. - -Proof. -intros; unfold cardinal_e_2; simpl; -abstract (do 2 rewrite cons_cardinal_e; romega with *). -Defined. - -Definition ocaml_compare s1 s2 := - ocaml_compare_aux (cons s1 End, cons s2 End). - -Lemma ocaml_compare_aux_Cmp : forall e, - Cmp (ocaml_compare_aux e) (flatten_e e#1) (flatten_e e#2). -Proof. - intros e; functional induction ocaml_compare_aux e; simpl; intros; - auto; try discriminate. - apply L.eq_refl. - simpl in *. - apply cons_Cmp; auto. - rewrite <- 2 cons_1; auto. -Qed. - -Lemma ocaml_compare_Cmp : forall s1 s2, - Cmp (ocaml_compare s1 s2) (elements s1) (elements s2). -Proof. - unfold ocaml_compare; intros. - assert (H1:=cons_1 s1 End). - assert (H2:=cons_1 s2 End). - simpl in *; rewrite <- app_nil_end in *; rewrite <-H1,<-H2. - apply (@ocaml_compare_aux_Cmp (cons s1 End, cons s2 End)). -Qed. - -Lemma ocaml_compare_alt : forall s1 s2, bst s1 -> bst s2 -> - ocaml_compare s1 s2 = compare s1 s2. -Proof. - intros s1 s2 B1 B2. - generalize (ocaml_compare_Cmp s1 s2)(compare_Cmp s1 s2). - unfold Cmp. - destruct ocaml_compare; destruct compare; auto; intros; elimtype False. - elim (lt_not_eq B1 B2 H0); auto. - elim (lt_not_eq B2 B1 H0); auto. - apply eq_sym; auto. - elim (lt_not_eq B1 B2 H); auto. - elim (lt_not_eq B1 B1). - red; eapply L.lt_trans; eauto. - apply eq_refl. - elim (lt_not_eq B2 B1 H); auto. - apply eq_sym; auto. - elim (lt_not_eq B1 B2 H0); auto. - elim (lt_not_eq B1 B1). - red; eapply L.lt_trans; eauto. - apply eq_refl. -Qed. - - -(** * Equality test *) - -Definition ocaml_equal s1 s2 : bool := - match ocaml_compare s1 s2 with - | Eq => true - | _ => false - end. - -Lemma ocaml_equal_1 : forall s1 s2, bst s1 -> bst s2 -> - Equal s1 s2 -> ocaml_equal s1 s2 = true. -Proof. -unfold ocaml_equal; intros s1 s2 B1 B2 E. -generalize (ocaml_compare_Cmp s1 s2). -destruct (ocaml_compare s1 s2); auto; intros. -elim (lt_not_eq B1 B2 H E); auto. -elim (lt_not_eq B2 B1 H (eq_sym E)); auto. -Qed. - -Lemma ocaml_equal_2 : forall s1 s2, - ocaml_equal s1 s2 = true -> Equal s1 s2. -Proof. -unfold ocaml_equal; intros s1 s2 E. -generalize (ocaml_compare_Cmp s1 s2); - destruct ocaml_compare; auto; discriminate. -Qed. - -Lemma ocaml_equal_alt : forall s1 s2, bst s1 -> bst s2 -> - ocaml_equal s1 s2 = equal s1 s2. -Proof. -intros; unfold ocaml_equal, equal; rewrite ocaml_compare_alt; auto. -Qed. - -End OcamlOps. - - - -(** * Encapsulation - - We can implement [S] with balanced binary search trees. - When compared to [FSetAVL], we maintain here two invariants - (bst and avl) instead of only bst, which is enough for fulfilling - the FSet interface. - - This encapsulation propose the non-structural variants - [ocaml_union], [ocaml_subset], [ocaml_compare], [ocaml_equal]. -*) - -Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X. - - Module E := X. - Module Import OcamlOps := OcamlOps I X. - Import AvlProofs. - Import Raw. - Import Raw.Proofs. - - Record bbst := Bbst {this :> Raw.t; is_bst : bst this; is_avl : avl this}. - Definition t := bbst. - Definition elt := E.t. - - Definition In (x : elt) (s : t) : Prop := In x s. - Definition Equal (s s':t) : Prop := forall a : elt, In a s <-> In a s'. - Definition Subset (s s':t) : Prop := forall a : elt, In a s -> In a s'. - Definition Empty (s:t) : Prop := forall a : elt, ~ In a s. - Definition For_all (P : elt -> Prop) (s:t) : Prop := forall x, In x s -> P x. - Definition Exists (P : elt -> Prop) (s:t) : Prop := exists x, In x s /\ P x. - - Lemma In_1 : forall (s:t)(x y:elt), E.eq x y -> In x s -> In y s. - Proof. intro s; exact (@In_1 s). Qed. - - Definition mem (x:elt)(s:t) : bool := mem x s. - - Definition empty : t := Bbst empty_bst empty_avl. - Definition is_empty (s:t) : bool := is_empty s. - Definition singleton (x:elt) : t := - Bbst (singleton_bst x) (singleton_avl x). - Definition add (x:elt)(s:t) : t := - Bbst (add_bst x (is_bst s)) (add_avl x (is_avl s)). - Definition remove (x:elt)(s:t) : t := - Bbst (remove_bst x (is_bst s)) (remove_avl x (is_avl s)). - Definition inter (s s':t) : t := - Bbst (inter_bst (is_bst s) (is_bst s')) - (inter_avl (is_avl s) (is_avl s')). - Definition union (s s':t) : t := - Bbst (union_bst (is_bst s) (is_bst s')) - (union_avl (is_avl s) (is_avl s')). - Definition ocaml_union (s s':t) : t := - Bbst (@ocaml_union_bst (s.(this),s'.(this)) - (is_bst s) (is_avl s) (is_bst s') (is_avl s')) - (@ocaml_union_avl (s.(this),s'.(this)) (is_avl s) (is_avl s')). - Definition diff (s s':t) : t := - Bbst (diff_bst (is_bst s) (is_bst s')) - (diff_avl (is_avl s) (is_avl s')). - Definition elements (s:t) : list elt := elements s. - Definition min_elt (s:t) : option elt := min_elt s. - Definition max_elt (s:t) : option elt := max_elt s. - Definition choose (s:t) : option elt := choose s. - Definition fold (B : Type) (f : elt -> B -> B) (s:t) : B -> B := fold f s. - Definition cardinal (s:t) : nat := cardinal s. - Definition filter (f : elt -> bool) (s:t) : t := - Bbst (filter_bst f (is_bst s)) (filter_avl f (is_avl s)). - Definition for_all (f : elt -> bool) (s:t) : bool := for_all f s. - Definition exists_ (f : elt -> bool) (s:t) : bool := exists_ f s. - Definition partition (f : elt -> bool) (s:t) : t * t := - let p := partition f s in - (@Bbst (fst p) (partition_bst_1 f (is_bst s)) - (partition_avl_1 f (is_avl s)), - @Bbst (snd p) (partition_bst_2 f (is_bst s)) - (partition_avl_2 f (is_avl s))). - - Definition equal (s s':t) : bool := equal s s'. - Definition ocaml_equal (s s':t) : bool := ocaml_equal s s'. - Definition subset (s s':t) : bool := subset s s'. - Definition ocaml_subset (s s':t) : bool := - ocaml_subset (s.(this),s'.(this)). - - Definition eq (s s':t) : Prop := Equal s s'. - Definition lt (s s':t) : Prop := lt s s'. - - Definition compare (s s':t) : Compare lt eq s s'. - Proof. - intros (s,b,a) (s',b',a'). - generalize (compare_Cmp s s'). - destruct Raw.compare; intros; [apply EQ|apply LT|apply GT]; red; auto. - change (Raw.Equal s s'); auto. - Defined. - - Definition ocaml_compare (s s':t) : Compare lt eq s s'. - Proof. - intros (s,b,a) (s',b',a'). - generalize (ocaml_compare_Cmp s s'). - destruct ocaml_compare; intros; [apply EQ|apply LT|apply GT]; red; auto. - change (Raw.Equal s s'); auto. - Defined. - - Definition eq_dec (s s':t) : { eq s s' } + { ~ eq s s' }. - Proof. - intros (s,b,a) (s',b',a'); unfold eq; simpl. - case_eq (Raw.equal s s'); intro H; [left|right]. - apply equal_2; auto. - intro H'; rewrite equal_1 in H; auto; discriminate. - Defined. - - (* specs *) - Section Specs. - Variable s s' s'': t. - Variable x y : elt. - - Hint Resolve is_bst is_avl. - - Lemma mem_1 : In x s -> mem x s = true. - Proof. exact (mem_1 (is_bst s)). Qed. - Lemma mem_2 : mem x s = true -> In x s. - Proof. exact (@mem_2 s x). Qed. - - Lemma equal_1 : Equal s s' -> equal s s' = true. - Proof. exact (equal_1 (is_bst s) (is_bst s')). Qed. - Lemma equal_2 : equal s s' = true -> Equal s s'. - Proof. exact (@equal_2 s s'). Qed. - - Lemma ocaml_equal_alt : ocaml_equal s s' = equal s s'. - Proof. - destruct s; destruct s'; unfold ocaml_equal, equal; simpl. - apply ocaml_equal_alt; auto. - Qed. - - Lemma ocaml_equal_1 : Equal s s' -> ocaml_equal s s' = true. - Proof. exact (ocaml_equal_1 (is_bst s) (is_bst s')). Qed. - Lemma ocaml_equal_2 : ocaml_equal s s' = true -> Equal s s'. - Proof. exact (@ocaml_equal_2 s s'). Qed. - - Ltac wrap t H := unfold t, In; simpl; rewrite H; auto; intuition. - - Lemma subset_1 : Subset s s' -> subset s s' = true. - Proof. wrap subset subset_12. Qed. - Lemma subset_2 : subset s s' = true -> Subset s s'. - Proof. wrap subset subset_12. Qed. - - Lemma ocaml_subset_alt : ocaml_subset s s' = subset s s'. - Proof. - destruct s; destruct s'; unfold ocaml_subset, subset; simpl. - rewrite ocaml_subset_alt; auto. - Qed. - - Lemma ocaml_subset_1 : Subset s s' -> ocaml_subset s s' = true. - Proof. wrap ocaml_subset ocaml_subset_12; simpl; auto. Qed. - Lemma ocaml_subset_2 : ocaml_subset s s' = true -> Subset s s'. - Proof. wrap ocaml_subset ocaml_subset_12; simpl; auto. Qed. - - Lemma empty_1 : Empty empty. - Proof. exact empty_1. Qed. - - Lemma is_empty_1 : Empty s -> is_empty s = true. - Proof. exact (@is_empty_1 s). Qed. - Lemma is_empty_2 : is_empty s = true -> Empty s. - Proof. exact (@is_empty_2 s). Qed. - - Lemma add_1 : E.eq x y -> In y (add x s). - Proof. wrap add add_in. Qed. - Lemma add_2 : In y s -> In y (add x s). - Proof. wrap add add_in. Qed. - Lemma add_3 : ~ E.eq x y -> In y (add x s) -> In y s. - Proof. wrap add add_in. elim H; auto. Qed. - - Lemma remove_1 : E.eq x y -> ~ In y (remove x s). - Proof. wrap remove remove_in. Qed. - Lemma remove_2 : ~ E.eq x y -> In y s -> In y (remove x s). - Proof. wrap remove remove_in. Qed. - Lemma remove_3 : In y (remove x s) -> In y s. - Proof. wrap remove remove_in. Qed. - - Lemma singleton_1 : In y (singleton x) -> E.eq x y. - Proof. exact (@singleton_1 x y). Qed. - Lemma singleton_2 : E.eq x y -> In y (singleton x). - Proof. exact (@singleton_2 x y). Qed. - - Lemma union_1 : In x (union s s') -> In x s \/ In x s'. - Proof. wrap union union_in. Qed. - Lemma union_2 : In x s -> In x (union s s'). - Proof. wrap union union_in. Qed. - Lemma union_3 : In x s' -> In x (union s s'). - Proof. wrap union union_in. Qed. - - Lemma ocaml_union_alt : Equal (ocaml_union s s') (union s s'). - Proof. - unfold ocaml_union, union, Equal, In. - destruct s as (s0,b,a); destruct s' as (s0',b',a'); simpl. - exact (@ocaml_union_alt (s0,s0') b a b' a'). - Qed. - - Lemma ocaml_union_1 : In x (ocaml_union s s') -> In x s \/ In x s'. - Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed. - Lemma ocaml_union_2 : In x s -> In x (ocaml_union s s'). - Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed. - Lemma ocaml_union_3 : In x s' -> In x (ocaml_union s s'). - Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed. - - Lemma inter_1 : In x (inter s s') -> In x s. - Proof. wrap inter inter_in. Qed. - Lemma inter_2 : In x (inter s s') -> In x s'. - Proof. wrap inter inter_in. Qed. - Lemma inter_3 : In x s -> In x s' -> In x (inter s s'). - Proof. wrap inter inter_in. Qed. - - Lemma diff_1 : In x (diff s s') -> In x s. - Proof. wrap diff diff_in. Qed. - Lemma diff_2 : In x (diff s s') -> ~ In x s'. - Proof. wrap diff diff_in. Qed. - Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s'). - Proof. wrap diff diff_in. Qed. - - Lemma fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A), - fold f s i = fold_left (fun a e => f e a) (elements s) i. - Proof. - unfold fold, elements; intros; apply fold_1; auto. - Qed. - - Lemma cardinal_1 : cardinal s = length (elements s). - Proof. - unfold cardinal, elements; intros; apply elements_cardinal; auto. - Qed. - - Section Filter. - Variable f : elt -> bool. - - Lemma filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s. - Proof. intro. wrap filter filter_in. Qed. - Lemma filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true. - Proof. intro. wrap filter filter_in. Qed. - Lemma filter_3 : compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s). - Proof. intro. wrap filter filter_in. Qed. - - Lemma for_all_1 : compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true. - Proof. exact (@for_all_1 f s). Qed. - Lemma for_all_2 : compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s. - Proof. exact (@for_all_2 f s). Qed. - - Lemma exists_1 : compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true. - Proof. exact (@exists_1 f s). Qed. - Lemma exists_2 : compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s. - Proof. exact (@exists_2 f s). Qed. - - Lemma partition_1 : compat_bool E.eq f -> - Equal (fst (partition f s)) (filter f s). - Proof. - unfold partition, filter, Equal, In; simpl ;intros H a. - rewrite partition_in_1, filter_in; intuition. - Qed. - - Lemma partition_2 : compat_bool E.eq f -> - Equal (snd (partition f s)) (filter (fun x => negb (f x)) s). - Proof. - unfold partition, filter, Equal, In; simpl ;intros H a. - rewrite partition_in_2, filter_in; intuition. - rewrite H2; auto. - destruct (f a); auto. - red; intros; f_equal. - rewrite (H _ _ H0); auto. - Qed. - - End Filter. - - Lemma elements_1 : In x s -> InA E.eq x (elements s). - Proof. wrap elements elements_in. Qed. - Lemma elements_2 : InA E.eq x (elements s) -> In x s. - Proof. wrap elements elements_in. Qed. - Lemma elements_3 : sort E.lt (elements s). - Proof. exact (elements_sort (is_bst s)). Qed. - Lemma elements_3w : NoDupA E.eq (elements s). - Proof. exact (elements_nodup (is_bst s)). Qed. - - Lemma min_elt_1 : min_elt s = Some x -> In x s. - Proof. exact (@min_elt_1 s x). Qed. - Lemma min_elt_2 : min_elt s = Some x -> In y s -> ~ E.lt y x. - Proof. exact (@min_elt_2 s x y (is_bst s)). Qed. - Lemma min_elt_3 : min_elt s = None -> Empty s. - Proof. exact (@min_elt_3 s). Qed. - - Lemma max_elt_1 : max_elt s = Some x -> In x s. - Proof. exact (@max_elt_1 s x). Qed. - Lemma max_elt_2 : max_elt s = Some x -> In y s -> ~ E.lt x y. - Proof. exact (@max_elt_2 s x y (is_bst s)). Qed. - Lemma max_elt_3 : max_elt s = None -> Empty s. - Proof. exact (@max_elt_3 s). Qed. - - Lemma choose_1 : choose s = Some x -> In x s. - Proof. exact (@choose_1 s x). Qed. - Lemma choose_2 : choose s = None -> Empty s. - Proof. exact (@choose_2 s). Qed. - Lemma choose_3 : choose s = Some x -> choose s' = Some y -> - Equal s s' -> E.eq x y. - Proof. exact (@choose_3 _ _ (is_bst s) (is_bst s') x y). Qed. - - Lemma eq_refl : eq s s. - Proof. exact (eq_refl s). Qed. - Lemma eq_sym : eq s s' -> eq s' s. - Proof. exact (@eq_sym s s'). Qed. - Lemma eq_trans : eq s s' -> eq s' s'' -> eq s s''. - Proof. exact (@eq_trans s s' s''). Qed. - - Lemma lt_trans : lt s s' -> lt s' s'' -> lt s s''. - Proof. exact (@lt_trans s s' s''). Qed. - Lemma lt_not_eq : lt s s' -> ~eq s s'. - Proof. exact (@lt_not_eq _ _ (is_bst s) (is_bst s')). Qed. - - End Specs. -End IntMake. - -(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *) - -Module Make (X: OrderedType) <: S with Module E := X - :=IntMake(Z_as_Int)(X). - |