summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetFacts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FSetFacts.v')
-rw-r--r--theories/FSets/FSetFacts.v409
1 files changed, 409 insertions, 0 deletions
diff --git a/theories/FSets/FSetFacts.v b/theories/FSets/FSetFacts.v
new file mode 100644
index 00000000..d8c0b802
--- /dev/null
+++ b/theories/FSets/FSetFacts.v
@@ -0,0 +1,409 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id: FSetFacts.v 8681 2006-04-05 11:56:14Z letouzey $ *)
+
+(** * Finite sets library *)
+
+(** This functor derives additional facts from [FSetInterface.S]. These
+ facts are mainly the specifications of [FSetInterface.S] written using
+ different styles: equivalence and boolean equalities.
+ Moreover, we prove that [E.Eq] and [Equal] are setoid equalities.
+*)
+
+Require Export FSetInterface.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Module Facts (M: S).
+Module ME := OrderedTypeFacts M.E.
+Import ME.
+Import M.
+Import Logic. (* to unmask [eq] *)
+Import Peano. (* to unmask [lt] *)
+
+(** * Specifications written using equivalences *)
+
+Section IffSpec.
+Variable s s' s'' : t.
+Variable x y z : elt.
+
+Lemma In_eq_iff : E.eq x y -> (In x s <-> In y s).
+Proof.
+split; apply In_1; auto.
+Qed.
+
+Lemma mem_iff : In x s <-> mem x s = true.
+Proof.
+split; [apply mem_1|apply mem_2].
+Qed.
+
+Lemma not_mem_iff : ~In x s <-> mem x s = false.
+Proof.
+rewrite mem_iff; destruct (mem x s); intuition.
+Qed.
+
+Lemma equal_iff : s[=]s' <-> equal s s' = true.
+Proof.
+split; [apply equal_1|apply equal_2].
+Qed.
+
+Lemma subset_iff : s[<=]s' <-> subset s s' = true.
+Proof.
+split; [apply subset_1|apply subset_2].
+Qed.
+
+Lemma empty_iff : In x empty <-> False.
+Proof.
+intuition; apply (empty_1 H).
+Qed.
+
+Lemma is_empty_iff : Empty s <-> is_empty s = true.
+Proof.
+split; [apply is_empty_1|apply is_empty_2].
+Qed.
+
+Lemma singleton_iff : In y (singleton x) <-> E.eq x y.
+Proof.
+split; [apply singleton_1|apply singleton_2].
+Qed.
+
+Lemma add_iff : In y (add x s) <-> E.eq x y \/ In y s.
+Proof.
+split; [ | destruct 1; [apply add_1|apply add_2]]; auto.
+destruct (eq_dec x y) as [E|E]; auto.
+intro H; right; exact (add_3 E H).
+Qed.
+
+Lemma add_neq_iff : ~ E.eq x y -> (In y (add x s) <-> In y s).
+Proof.
+split; [apply add_3|apply add_2]; auto.
+Qed.
+
+Lemma remove_iff : In y (remove x s) <-> In y s /\ ~E.eq x y.
+Proof.
+split; [split; [apply remove_3 with x |] | destruct 1; apply remove_2]; auto.
+intro.
+apply (remove_1 H0 H).
+Qed.
+
+Lemma remove_neq_iff : ~ E.eq x y -> (In y (remove x s) <-> In y s).
+Proof.
+split; [apply remove_3|apply remove_2]; auto.
+Qed.
+
+Lemma union_iff : In x (union s s') <-> In x s \/ In x s'.
+Proof.
+split; [apply union_1 | destruct 1; [apply union_2|apply union_3]]; auto.
+Qed.
+
+Lemma inter_iff : In x (inter s s') <-> In x s /\ In x s'.
+Proof.
+split; [split; [apply inter_1 with s' | apply inter_2 with s] | destruct 1; apply inter_3]; auto.
+Qed.
+
+Lemma diff_iff : In x (diff s s') <-> In x s /\ ~ In x s'.
+Proof.
+split; [split; [apply diff_1 with s' | apply diff_2 with s] | destruct 1; apply diff_3]; auto.
+Qed.
+
+Variable f : elt->bool.
+
+Lemma filter_iff : compat_bool E.eq f -> (In x (filter f s) <-> In x s /\ f x = true).
+Proof.
+split; [split; [apply filter_1 with f | apply filter_2 with s] | destruct 1; apply filter_3]; auto.
+Qed.
+
+Lemma for_all_iff : compat_bool E.eq f ->
+ (For_all (fun x => f x = true) s <-> for_all f s = true).
+Proof.
+split; [apply for_all_1 | apply for_all_2]; auto.
+Qed.
+
+Lemma exists_iff : compat_bool E.eq f ->
+ (Exists (fun x => f x = true) s <-> exists_ f s = true).
+Proof.
+split; [apply exists_1 | apply exists_2]; auto.
+Qed.
+
+Lemma elements_iff : In x s <-> ME.In x (elements s).
+Proof.
+split; [apply elements_1 | apply elements_2].
+Qed.
+
+End IffSpec.
+
+(** Useful tactic for simplifying expressions like [In y (add x (union s s'))] *)
+
+Ltac set_iff :=
+ repeat (progress (
+ rewrite add_iff || rewrite remove_iff || rewrite singleton_iff
+ || rewrite union_iff || rewrite inter_iff || rewrite diff_iff
+ || rewrite empty_iff)).
+
+(** * Specifications written using boolean predicates *)
+
+Section BoolSpec.
+Variable s s' s'' : t.
+Variable x y z : elt.
+
+Lemma mem_b : E.eq x y -> mem x s = mem y s.
+Proof.
+intros.
+generalize (mem_iff s x) (mem_iff s y)(In_eq_iff s H).
+destruct (mem x s); destruct (mem y s); intuition.
+Qed.
+
+Lemma add_b : mem y (add x s) = eqb x y || mem y s.
+Proof.
+generalize (mem_iff (add x s) y)(mem_iff s y)(add_iff s x y); unfold eqb.
+destruct (eq_dec x y); destruct (mem y s); destruct (mem y (add x s)); intuition.
+Qed.
+
+Lemma add_neq_b : ~ E.eq x y -> mem y (add x s) = mem y s.
+Proof.
+intros; generalize (mem_iff (add x s) y)(mem_iff s y)(add_neq_iff s H).
+destruct (mem y s); destruct (mem y (add x s)); intuition.
+Qed.
+
+Lemma remove_b : mem y (remove x s) = mem y s && negb (eqb x y).
+Proof.
+generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_iff s x y); unfold eqb.
+destruct (eq_dec x y); destruct (mem y s); destruct (mem y (remove x s)); simpl; intuition.
+Qed.
+
+Lemma remove_neq_b : ~ E.eq x y -> mem y (remove x s) = mem y s.
+Proof.
+intros; generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_neq_iff s H).
+destruct (mem y s); destruct (mem y (remove x s)); intuition.
+Qed.
+
+Lemma singleton_b : mem y (singleton x) = eqb x y.
+Proof.
+generalize (mem_iff (singleton x) y)(singleton_iff x y); unfold eqb.
+destruct (eq_dec x y); destruct (mem y (singleton x)); intuition.
+Qed.
+
+Lemma union_b : mem x (union s s') = mem x s || mem x s'.
+Proof.
+generalize (mem_iff (union s s') x)(mem_iff s x)(mem_iff s' x)(union_iff s s' x).
+destruct (mem x s); destruct (mem x s'); destruct (mem x (union s s')); intuition.
+Qed.
+
+Lemma inter_b : mem x (inter s s') = mem x s && mem x s'.
+Proof.
+generalize (mem_iff (inter s s') x)(mem_iff s x)(mem_iff s' x)(inter_iff s s' x).
+destruct (mem x s); destruct (mem x s'); destruct (mem x (inter s s')); intuition.
+Qed.
+
+Lemma diff_b : mem x (diff s s') = mem x s && negb (mem x s').
+Proof.
+generalize (mem_iff (diff s s') x)(mem_iff s x)(mem_iff s' x)(diff_iff s s' x).
+destruct (mem x s); destruct (mem x s'); destruct (mem x (diff s s')); simpl; intuition.
+Qed.
+
+Lemma elements_b : mem x s = existsb (eqb x) (elements s).
+Proof.
+generalize (mem_iff s x)(elements_iff s x)(existsb_exists (eqb x) (elements s)).
+rewrite InA_alt.
+destruct (mem x s); destruct (existsb (eqb x) (elements s)); auto; intros.
+symmetry.
+rewrite H1.
+destruct H0 as (H0,_).
+destruct H0 as (a,(Ha1,Ha2)); [ intuition |].
+exists a; intuition.
+unfold eqb; destruct (eq_dec x a); auto.
+rewrite <- H.
+rewrite H0.
+destruct H1 as (H1,_).
+destruct H1 as (a,(Ha1,Ha2)); [intuition|].
+exists a; intuition.
+unfold eqb in *; destruct (eq_dec x a); auto; discriminate.
+Qed.
+
+Variable f : elt->bool.
+
+Lemma filter_b : compat_bool E.eq f -> mem x (filter f s) = mem x s && f x.
+Proof.
+intros.
+generalize (mem_iff (filter f s) x)(mem_iff s x)(filter_iff s x H).
+destruct (mem x s); destruct (mem x (filter f s)); destruct (f x); simpl; intuition.
+Qed.
+
+Lemma for_all_b : compat_bool E.eq f ->
+ for_all f s = forallb f (elements s).
+Proof.
+intros.
+generalize (forallb_forall f (elements s))(for_all_iff s H)(elements_iff s).
+unfold For_all.
+destruct (forallb f (elements s)); destruct (for_all f s); auto; intros.
+rewrite <- H1; intros.
+destruct H0 as (H0,_).
+rewrite (H2 x0) in H3.
+rewrite (InA_alt E.eq x0 (elements s)) in H3.
+destruct H3 as (a,(Ha1,Ha2)).
+rewrite (H _ _ Ha1).
+apply H0; auto.
+symmetry.
+rewrite H0; intros.
+destruct H1 as (_,H1).
+apply H1; auto.
+Qed.
+
+Lemma exists_b : compat_bool E.eq f ->
+ exists_ f s = existsb f (elements s).
+Proof.
+intros.
+generalize (existsb_exists f (elements s))(exists_iff s H)(elements_iff s).
+unfold Exists.
+destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros.
+rewrite <- H1; intros.
+destruct H0 as (H0,_).
+destruct H0 as (a,(Ha1,Ha2)); auto.
+exists a; auto.
+symmetry.
+rewrite H0.
+destruct H1 as (_,H1).
+destruct H1 as (a,(Ha1,Ha2)); auto.
+rewrite (H2 a) in Ha1.
+rewrite (InA_alt E.eq a (elements s)) in Ha1.
+destruct Ha1 as (b,(Hb1,Hb2)).
+exists b; auto.
+rewrite <- (H _ _ Hb1); auto.
+Qed.
+
+End BoolSpec.
+
+(** * [E.eq] and [Equal] are setoid equalities *)
+
+Definition E_ST : Setoid_Theory elt E.eq.
+Proof.
+constructor; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
+Qed.
+
+Add Setoid elt E.eq E_ST as EltSetoid.
+
+Definition Equal_ST : Setoid_Theory t Equal.
+Proof.
+constructor; [apply eq_refl | apply eq_sym | apply eq_trans].
+Qed.
+
+Add Setoid t Equal Equal_ST as EqualSetoid.
+
+Add Morphism In with signature E.eq ==> Equal ==> iff as In_m.
+Proof.
+unfold Equal; intros x y H s s' H0.
+rewrite (In_eq_iff s H); auto.
+Qed.
+
+Add Morphism is_empty : is_empty_m.
+Proof.
+unfold Equal; intros s s' H.
+generalize (is_empty_iff s)(is_empty_iff s').
+destruct (is_empty s); destruct (is_empty s');
+ unfold Empty; auto; intros.
+symmetry.
+rewrite <- H1; intros a Ha.
+rewrite <- (H a) in Ha.
+destruct H0 as (_,H0).
+exact (H0 (refl_equal true) _ Ha).
+rewrite <- H0; intros a Ha.
+rewrite (H a) in Ha.
+destruct H1 as (_,H1).
+exact (H1 (refl_equal true) _ Ha).
+Qed.
+
+Add Morphism Empty with signature Equal ==> iff as Empty_m.
+Proof.
+intros; do 2 rewrite is_empty_iff; rewrite H; intuition.
+Qed.
+
+Add Morphism mem : mem_m.
+Proof.
+unfold Equal; intros x y H s s' H0.
+generalize (H0 x); clear H0; rewrite (In_eq_iff s' H).
+generalize (mem_iff s x)(mem_iff s' y).
+destruct (mem x s); destruct (mem y s'); intuition.
+Qed.
+
+Add Morphism singleton : singleton_m.
+Proof.
+unfold Equal; intros x y H a.
+do 2 rewrite singleton_iff; split; order.
+Qed.
+
+Add Morphism add : add_m.
+Proof.
+unfold Equal; intros x y H s s' H0 a.
+do 2 rewrite add_iff; rewrite H; rewrite H0; intuition.
+Qed.
+
+Add Morphism remove : remove_m.
+Proof.
+unfold Equal; intros x y H s s' H0 a.
+do 2 rewrite remove_iff; rewrite H; rewrite H0; intuition.
+Qed.
+
+Add Morphism union : union_m.
+Proof.
+unfold Equal; intros s s' H s'' s''' H0 a.
+do 2 rewrite union_iff; rewrite H; rewrite H0; intuition.
+Qed.
+
+Add Morphism inter : inter_m.
+Proof.
+unfold Equal; intros s s' H s'' s''' H0 a.
+do 2 rewrite inter_iff; rewrite H; rewrite H0; intuition.
+Qed.
+
+Add Morphism diff : diff_m.
+Proof.
+unfold Equal; intros s s' H s'' s''' H0 a.
+do 2 rewrite diff_iff; rewrite H; rewrite H0; intuition.
+Qed.
+
+Add Morphism Subset with signature Equal ==> Equal ==> iff as Subset_m.
+Proof.
+unfold Equal, Subset; firstorder.
+Qed.
+
+Add Morphism subset : subset_m.
+Proof.
+intros s s' H s'' s''' H0.
+generalize (subset_iff s s'') (subset_iff s' s''').
+destruct (subset s s''); destruct (subset s' s'''); auto; intros.
+rewrite H in H1; rewrite H0 in H1; intuition.
+rewrite H in H1; rewrite H0 in H1; intuition.
+Qed.
+
+Add Morphism equal : equal_m.
+Proof.
+intros s s' H s'' s''' H0.
+generalize (equal_iff s s'') (equal_iff s' s''').
+destruct (equal s s''); destruct (equal s' s'''); auto; intros.
+rewrite H in H1; rewrite H0 in H1; intuition.
+rewrite H in H1; rewrite H0 in H1; intuition.
+Qed.
+
+(* [fold], [filter], [for_all], [exists_] and [partition] cannot be proved morphism
+ without additional hypothesis on [f]. For instance: *)
+
+Lemma filter_equal : forall f, compat_bool E.eq f ->
+ forall s s', s[=]s' -> filter f s [=] filter f s'.
+Proof.
+unfold Equal; intros; repeat rewrite filter_iff; auto; rewrite H0; tauto.
+Qed.
+
+(* For [elements], [min_elt], [max_elt] and [choose], we would need setoid
+ structures on [list elt] and [option elt]. *)
+
+(* Later:
+Add Morphism cardinal ; cardinal_m.
+*)
+
+End Facts.