diff options
Diffstat (limited to 'theories/FSets/FSetDecide.v')
-rw-r--r-- | theories/FSets/FSetDecide.v | 54 |
1 files changed, 41 insertions, 13 deletions
diff --git a/theories/FSets/FSetDecide.v b/theories/FSets/FSetDecide.v index 497f4e6d..7c321779 100644 --- a/theories/FSets/FSetDecide.v +++ b/theories/FSets/FSetDecide.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (***********************************************************************) -(* $Id: FSetDecide.v 13171 2010-06-18 21:45:40Z letouzey $ *) +(* $Id: FSetDecide.v 14527 2011-10-07 14:33:38Z letouzey $ *) (**************************************************************) (* FSetDecide.v *) @@ -368,6 +368,23 @@ the above form: "else" tactic(t2) := first [ t; first [ t1 | fail 2 ] | t2 ]. + Ltac abstract_term t := + if (is_var t) then fail "no need to abstract a variable" + else (let x := fresh "x" in set (x := t) in *; try clearbody x). + + Ltac abstract_elements := + repeat + (match goal with + | |- context [ singleton ?t ] => abstract_term t + | _ : context [ singleton ?t ] |- _ => abstract_term t + | |- context [ add ?t _ ] => abstract_term t + | _ : context [ add ?t _ ] |- _ => abstract_term t + | |- context [ remove ?t _ ] => abstract_term t + | _ : context [ remove ?t _ ] |- _ => abstract_term t + | |- context [ In ?t _ ] => abstract_term t + | _ : context [ In ?t _ ] |- _ => abstract_term t + end). + (** [prop P holds by t] succeeds (but does not modify the goal or context) if the proposition [P] can be proved by [t] in the current context. Otherwise, the tactic @@ -460,9 +477,12 @@ the above form: tactic). *) Hint Constructors FSet_elt_Prop FSet_Prop : FSet_Prop. Ltac discard_nonFSet := - decompose records; repeat ( match goal with + | H : context [ @Logic.eq ?T ?x ?y ] |- _ => + if (change T with E.t in H) then fail + else if (change T with t in H) then fail + else clear H | H : ?P |- _ => if prop (FSet_Prop P) holds by (auto 100 with FSet_Prop) @@ -482,6 +502,13 @@ the above form: F.union_iff F.inter_iff F.diff_iff : set_simpl. + Lemma eq_refl_iff (x : E.t) : E.eq x x <-> True. + Proof. + now split. + Qed. + + Hint Rewrite eq_refl_iff : set_eq_simpl. + (** ** Decidability of FSet Propositions *) (** [In] is decidable. *) @@ -558,8 +585,10 @@ the above form: Ltac substFSet := repeat ( match goal with + | H: E.eq ?x ?x |- _ => clear H | H: E.eq ?x ?y |- _ => rewrite H in *; clear H - end). + end); + autorewrite with set_eq_simpl in *. (** ** Considering Decidability of Base Propositions This tactic adds assertions about the decidability of @@ -639,13 +668,7 @@ the above form: (** Here is the crux of the proof search. Recursion through [intuition]! (This will terminate if I correctly understand the behavior of [intuition].) *) - Ltac fsetdec_rec := - try (match goal with - | H: E.eq ?x ?x -> False |- _ => destruct H - end); - (reflexivity || - contradiction || - (progress substFSet; intuition fsetdec_rec)). + Ltac fsetdec_rec := progress substFSet; intuition fsetdec_rec. (** If we add [unfold Empty, Subset, Equal in *; intros;] to the beginning of this tactic, it will satisfy the same @@ -653,12 +676,13 @@ the above form: be much slower than necessary without the pre-processing done by the wrapper tactic [fsetdec]. *) Ltac fsetdec_body := + autorewrite with set_eq_simpl in *; inst_FSet_hypotheses; - autorewrite with set_simpl in *; + autorewrite with set_simpl set_eq_simpl in *; push not in * using FSet_decidability; substFSet; assert_decidability; - auto using E.eq_refl; + auto; (intuition fsetdec_rec) || fail 1 "because the goal is beyond the scope of this tactic". @@ -677,6 +701,10 @@ the above form: [intros] to leave us with a goal of [~ P] than a goal of [False]. *) fold any not; intros; + (** We don't care about the value of elements : complex ones are + abstracted as new variables (avoiding potential dependencies, + see bug #2464) *) + abstract_elements; (** We remove dependencies to logical hypothesis. This way, later "clear" will work nicely (see bug #2136) *) no_logical_interdep; @@ -876,5 +904,5 @@ Require Import FSetInterface. the subtyping [WS<=S], the [Decide] functor which is meant to be used on modules [(M:S)] can simply be an alias of [WDecide]. *) -Module WDecide (M:WS) := WDecide_fun M.E M. +Module WDecide (M:WS) := !WDecide_fun M.E M. Module Decide := WDecide. |