diff options
Diffstat (limited to 'theories/FSets/FSetCompat.v')
-rw-r--r-- | theories/FSets/FSetCompat.v | 410 |
1 files changed, 410 insertions, 0 deletions
diff --git a/theories/FSets/FSetCompat.v b/theories/FSets/FSetCompat.v new file mode 100644 index 00000000..c3d614ee --- /dev/null +++ b/theories/FSets/FSetCompat.v @@ -0,0 +1,410 @@ +(***********************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) +(* \VV/ *************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(***********************************************************************) + +(** * Compatibility functors between FSetInterface and MSetInterface. *) + +Require Import FSetInterface FSetFacts MSetInterface MSetFacts. +Set Implicit Arguments. +Unset Strict Implicit. + +(** * From new Weak Sets to old ones *) + +Module Backport_WSets + (E:DecidableType.DecidableType) + (M:MSetInterface.WSets with Definition E.t := E.t + with Definition E.eq := E.eq) + <: FSetInterface.WSfun E. + + Definition elt := E.t. + Definition t := M.t. + + Implicit Type s : t. + Implicit Type x y : elt. + Implicit Type f : elt -> bool. + + Definition In : elt -> t -> Prop := M.In. + Definition Equal s s' := forall a : elt, In a s <-> In a s'. + Definition Subset s s' := forall a : elt, In a s -> In a s'. + Definition Empty s := forall a : elt, ~ In a s. + Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x. + Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x. + Definition empty : t := M.empty. + Definition is_empty : t -> bool := M.is_empty. + Definition mem : elt -> t -> bool := M.mem. + Definition add : elt -> t -> t := M.add. + Definition singleton : elt -> t := M.singleton. + Definition remove : elt -> t -> t := M.remove. + Definition union : t -> t -> t := M.union. + Definition inter : t -> t -> t := M.inter. + Definition diff : t -> t -> t := M.diff. + Definition eq : t -> t -> Prop := M.eq. + Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec. + Definition equal : t -> t -> bool := M.equal. + Definition subset : t -> t -> bool := M.subset. + Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold. + Definition for_all : (elt -> bool) -> t -> bool := M.for_all. + Definition exists_ : (elt -> bool) -> t -> bool := M.exists_. + Definition filter : (elt -> bool) -> t -> t := M.filter. + Definition partition : (elt -> bool) -> t -> t * t:= M.partition. + Definition cardinal : t -> nat := M.cardinal. + Definition elements : t -> list elt := M.elements. + Definition choose : t -> option elt := M.choose. + + Module MF := MSetFacts.WFacts M. + + Definition In_1 : forall s x y, E.eq x y -> In x s -> In y s + := MF.In_1. + Definition eq_refl : forall s, eq s s + := @Equivalence_Reflexive _ _ M.eq_equiv. + Definition eq_sym : forall s s', eq s s' -> eq s' s + := @Equivalence_Symmetric _ _ M.eq_equiv. + Definition eq_trans : forall s s' s'', eq s s' -> eq s' s'' -> eq s s'' + := @Equivalence_Transitive _ _ M.eq_equiv. + Definition mem_1 : forall s x, In x s -> mem x s = true + := MF.mem_1. + Definition mem_2 : forall s x, mem x s = true -> In x s + := MF.mem_2. + Definition equal_1 : forall s s', Equal s s' -> equal s s' = true + := MF.equal_1. + Definition equal_2 : forall s s', equal s s' = true -> Equal s s' + := MF.equal_2. + Definition subset_1 : forall s s', Subset s s' -> subset s s' = true + := MF.subset_1. + Definition subset_2 : forall s s', subset s s' = true -> Subset s s' + := MF.subset_2. + Definition empty_1 : Empty empty := MF.empty_1. + Definition is_empty_1 : forall s, Empty s -> is_empty s = true + := MF.is_empty_1. + Definition is_empty_2 : forall s, is_empty s = true -> Empty s + := MF.is_empty_2. + Definition add_1 : forall s x y, E.eq x y -> In y (add x s) + := MF.add_1. + Definition add_2 : forall s x y, In y s -> In y (add x s) + := MF.add_2. + Definition add_3 : forall s x y, ~ E.eq x y -> In y (add x s) -> In y s + := MF.add_3. + Definition remove_1 : forall s x y, E.eq x y -> ~ In y (remove x s) + := MF.remove_1. + Definition remove_2 : forall s x y, ~ E.eq x y -> In y s -> In y (remove x s) + := MF.remove_2. + Definition remove_3 : forall s x y, In y (remove x s) -> In y s + := MF.remove_3. + Definition union_1 : forall s s' x, In x (union s s') -> In x s \/ In x s' + := MF.union_1. + Definition union_2 : forall s s' x, In x s -> In x (union s s') + := MF.union_2. + Definition union_3 : forall s s' x, In x s' -> In x (union s s') + := MF.union_3. + Definition inter_1 : forall s s' x, In x (inter s s') -> In x s + := MF.inter_1. + Definition inter_2 : forall s s' x, In x (inter s s') -> In x s' + := MF.inter_2. + Definition inter_3 : forall s s' x, In x s -> In x s' -> In x (inter s s') + := MF.inter_3. + Definition diff_1 : forall s s' x, In x (diff s s') -> In x s + := MF.diff_1. + Definition diff_2 : forall s s' x, In x (diff s s') -> ~ In x s' + := MF.diff_2. + Definition diff_3 : forall s s' x, In x s -> ~ In x s' -> In x (diff s s') + := MF.diff_3. + Definition singleton_1 : forall x y, In y (singleton x) -> E.eq x y + := MF.singleton_1. + Definition singleton_2 : forall x y, E.eq x y -> In y (singleton x) + := MF.singleton_2. + Definition fold_1 : forall s (A : Type) (i : A) (f : elt -> A -> A), + fold f s i = fold_left (fun a e => f e a) (elements s) i + := MF.fold_1. + Definition cardinal_1 : forall s, cardinal s = length (elements s) + := MF.cardinal_1. + Definition filter_1 : forall s x f, compat_bool E.eq f -> + In x (filter f s) -> In x s + := MF.filter_1. + Definition filter_2 : forall s x f, compat_bool E.eq f -> + In x (filter f s) -> f x = true + := MF.filter_2. + Definition filter_3 : forall s x f, compat_bool E.eq f -> + In x s -> f x = true -> In x (filter f s) + := MF.filter_3. + Definition for_all_1 : forall s f, compat_bool E.eq f -> + For_all (fun x => f x = true) s -> for_all f s = true + := MF.for_all_1. + Definition for_all_2 : forall s f, compat_bool E.eq f -> + for_all f s = true -> For_all (fun x => f x = true) s + := MF.for_all_2. + Definition exists_1 : forall s f, compat_bool E.eq f -> + Exists (fun x => f x = true) s -> exists_ f s = true + := MF.exists_1. + Definition exists_2 : forall s f, compat_bool E.eq f -> + exists_ f s = true -> Exists (fun x => f x = true) s + := MF.exists_2. + Definition partition_1 : forall s f, compat_bool E.eq f -> + Equal (fst (partition f s)) (filter f s) + := MF.partition_1. + Definition partition_2 : forall s f, compat_bool E.eq f -> + Equal (snd (partition f s)) (filter (fun x => negb (f x)) s) + := MF.partition_2. + Definition choose_1 : forall s x, choose s = Some x -> In x s + := MF.choose_1. + Definition choose_2 : forall s, choose s = None -> Empty s + := MF.choose_2. + Definition elements_1 : forall s x, In x s -> InA E.eq x (elements s) + := MF.elements_1. + Definition elements_2 : forall s x, InA E.eq x (elements s) -> In x s + := MF.elements_2. + Definition elements_3w : forall s, NoDupA E.eq (elements s) + := MF.elements_3w. + +End Backport_WSets. + + +(** * From new Sets to new ones *) + +Module Backport_Sets + (E:OrderedType.OrderedType) + (M:MSetInterface.Sets with Definition E.t := E.t + with Definition E.eq := E.eq + with Definition E.lt := E.lt) + <: FSetInterface.S with Module E:=E. + + Include Backport_WSets E M. + + Implicit Type s : t. + Implicit Type x y : elt. + + Definition lt : t -> t -> Prop := M.lt. + Definition min_elt : t -> option elt := M.min_elt. + Definition max_elt : t -> option elt := M.max_elt. + Definition min_elt_1 : forall s x, min_elt s = Some x -> In x s + := M.min_elt_spec1. + Definition min_elt_2 : forall s x y, + min_elt s = Some x -> In y s -> ~ E.lt y x + := M.min_elt_spec2. + Definition min_elt_3 : forall s, min_elt s = None -> Empty s + := M.min_elt_spec3. + Definition max_elt_1 : forall s x, max_elt s = Some x -> In x s + := M.max_elt_spec1. + Definition max_elt_2 : forall s x y, + max_elt s = Some x -> In y s -> ~ E.lt x y + := M.max_elt_spec2. + Definition max_elt_3 : forall s, max_elt s = None -> Empty s + := M.max_elt_spec3. + Definition elements_3 : forall s, sort E.lt (elements s) + := M.elements_spec2. + Definition choose_3 : forall s s' x y, + choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y + := M.choose_spec3. + Definition lt_trans : forall s s' s'', lt s s' -> lt s' s'' -> lt s s'' + := @StrictOrder_Transitive _ _ M.lt_strorder. + Lemma lt_not_eq : forall s s', lt s s' -> ~ eq s s'. + Proof. + unfold lt, eq. intros s s' Hlt Heq. rewrite Heq in Hlt. + apply (StrictOrder_Irreflexive s'); auto. + Qed. + Definition compare : forall s s', Compare lt eq s s'. + Proof. + intros s s'; destruct (CompSpec2Type (M.compare_spec s s')); + [ apply EQ | apply LT | apply GT ]; auto. + Defined. + + Module E := E. + +End Backport_Sets. + + +(** * From old Weak Sets to new ones. *) + +Module Update_WSets + (E:Equalities.DecidableType) + (M:FSetInterface.WS with Definition E.t := E.t + with Definition E.eq := E.eq) + <: MSetInterface.WSetsOn E. + + Definition elt := E.t. + Definition t := M.t. + + Implicit Type s : t. + Implicit Type x y : elt. + Implicit Type f : elt -> bool. + + Definition In : elt -> t -> Prop := M.In. + Definition Equal s s' := forall a : elt, In a s <-> In a s'. + Definition Subset s s' := forall a : elt, In a s -> In a s'. + Definition Empty s := forall a : elt, ~ In a s. + Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x. + Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x. + Definition empty : t := M.empty. + Definition is_empty : t -> bool := M.is_empty. + Definition mem : elt -> t -> bool := M.mem. + Definition add : elt -> t -> t := M.add. + Definition singleton : elt -> t := M.singleton. + Definition remove : elt -> t -> t := M.remove. + Definition union : t -> t -> t := M.union. + Definition inter : t -> t -> t := M.inter. + Definition diff : t -> t -> t := M.diff. + Definition eq : t -> t -> Prop := M.eq. + Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec. + Definition equal : t -> t -> bool := M.equal. + Definition subset : t -> t -> bool := M.subset. + Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold. + Definition for_all : (elt -> bool) -> t -> bool := M.for_all. + Definition exists_ : (elt -> bool) -> t -> bool := M.exists_. + Definition filter : (elt -> bool) -> t -> t := M.filter. + Definition partition : (elt -> bool) -> t -> t * t:= M.partition. + Definition cardinal : t -> nat := M.cardinal. + Definition elements : t -> list elt := M.elements. + Definition choose : t -> option elt := M.choose. + + Module MF := FSetFacts.WFacts M. + + Instance In_compat : Proper (E.eq==>Logic.eq==>iff) In. + Proof. intros x x' Hx s s' Hs. subst. apply MF.In_eq_iff; auto. Qed. + + Instance eq_equiv : Equivalence eq. + + Section Spec. + Variable s s': t. + Variable x y : elt. + + Lemma mem_spec : mem x s = true <-> In x s. + Proof. intros; symmetry; apply MF.mem_iff. Qed. + + Lemma equal_spec : equal s s' = true <-> Equal s s'. + Proof. intros; symmetry; apply MF.equal_iff. Qed. + + Lemma subset_spec : subset s s' = true <-> Subset s s'. + Proof. intros; symmetry; apply MF.subset_iff. Qed. + + Definition empty_spec : Empty empty := M.empty_1. + + Lemma is_empty_spec : is_empty s = true <-> Empty s. + Proof. intros; symmetry; apply MF.is_empty_iff. Qed. + + Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s. + Proof. intros. rewrite MF.add_iff. intuition. Qed. + + Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x. + Proof. intros. rewrite MF.remove_iff. intuition. Qed. + + Lemma singleton_spec : In y (singleton x) <-> E.eq y x. + Proof. intros; rewrite MF.singleton_iff. intuition. Qed. + + Definition union_spec : In x (union s s') <-> In x s \/ In x s' + := @MF.union_iff s s' x. + Definition inter_spec : In x (inter s s') <-> In x s /\ In x s' + := @MF.inter_iff s s' x. + Definition diff_spec : In x (diff s s') <-> In x s /\ ~In x s' + := @MF.diff_iff s s' x. + Definition fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A), + fold f s i = fold_left (flip f) (elements s) i + := @M.fold_1 s. + Definition cardinal_spec : cardinal s = length (elements s) + := @M.cardinal_1 s. + + Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s. + Proof. intros; symmetry; apply MF.elements_iff. Qed. + + Definition elements_spec2w : NoDupA E.eq (elements s) + := @M.elements_3w s. + Definition choose_spec1 : choose s = Some x -> In x s + := @M.choose_1 s x. + Definition choose_spec2 : choose s = None -> Empty s + := @M.choose_2 s. + Definition filter_spec : forall f, Proper (E.eq==>Logic.eq) f -> + (In x (filter f s) <-> In x s /\ f x = true) + := @MF.filter_iff s x. + Definition partition_spec1 : forall f, Proper (E.eq==>Logic.eq) f -> + Equal (fst (partition f s)) (filter f s) + := @M.partition_1 s. + Definition partition_spec2 : forall f, Proper (E.eq==>Logic.eq) f -> + Equal (snd (partition f s)) (filter (fun x => negb (f x)) s) + := @M.partition_2 s. + + Lemma for_all_spec : forall f, Proper (E.eq==>Logic.eq) f -> + (for_all f s = true <-> For_all (fun x => f x = true) s). + Proof. intros; symmetry; apply MF.for_all_iff; auto. Qed. + + Lemma exists_spec : forall f, Proper (E.eq==>Logic.eq) f -> + (exists_ f s = true <-> Exists (fun x => f x = true) s). + Proof. intros; symmetry; apply MF.exists_iff; auto. Qed. + + End Spec. + +End Update_WSets. + + +(** * From old Sets to new ones. *) + +Module Update_Sets + (E:Orders.OrderedType) + (M:FSetInterface.S with Definition E.t := E.t + with Definition E.eq := E.eq + with Definition E.lt := E.lt) + <: MSetInterface.Sets with Module E:=E. + + Include Update_WSets E M. + + Implicit Type s : t. + Implicit Type x y : elt. + + Definition lt : t -> t -> Prop := M.lt. + Definition min_elt : t -> option elt := M.min_elt. + Definition max_elt : t -> option elt := M.max_elt. + Definition min_elt_spec1 : forall s x, min_elt s = Some x -> In x s + := M.min_elt_1. + Definition min_elt_spec2 : forall s x y, + min_elt s = Some x -> In y s -> ~ E.lt y x + := M.min_elt_2. + Definition min_elt_spec3 : forall s, min_elt s = None -> Empty s + := M.min_elt_3. + Definition max_elt_spec1 : forall s x, max_elt s = Some x -> In x s + := M.max_elt_1. + Definition max_elt_spec2 : forall s x y, + max_elt s = Some x -> In y s -> ~ E.lt x y + := M.max_elt_2. + Definition max_elt_spec3 : forall s, max_elt s = None -> Empty s + := M.max_elt_3. + Definition elements_spec2 : forall s, sort E.lt (elements s) + := M.elements_3. + Definition choose_spec3 : forall s s' x y, + choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y + := M.choose_3. + + Instance lt_strorder : StrictOrder lt. + Proof. + split. + intros x Hx. apply (M.lt_not_eq Hx); auto with *. + exact M.lt_trans. + Qed. + + Instance lt_compat : Proper (eq==>eq==>iff) lt. + Proof. + apply proper_sym_impl_iff_2; auto with *. + intros s s' Hs u u' Hu H. + assert (H0 : lt s' u). + destruct (M.compare s' u) as [H'|H'|H']; auto. + elim (M.lt_not_eq H). transitivity s'; auto with *. + elim (M.lt_not_eq (M.lt_trans H H')); auto. + destruct (M.compare s' u') as [H'|H'|H']; auto. + elim (M.lt_not_eq H). + transitivity u'; auto with *. transitivity s'; auto with *. + elim (M.lt_not_eq (M.lt_trans H' H0)); auto with *. + Qed. + + Definition compare s s' := + match M.compare s s' with + | EQ _ => Eq + | LT _ => Lt + | GT _ => Gt + end. + + Lemma compare_spec : forall s s', CompSpec eq lt s s' (compare s s'). + Proof. intros; unfold compare; destruct M.compare; auto. Qed. + + Module E := E. + +End Update_Sets. |