diff options
Diffstat (limited to 'theories/FSets/FSetBridge.v')
-rw-r--r-- | theories/FSets/FSetBridge.v | 750 |
1 files changed, 750 insertions, 0 deletions
diff --git a/theories/FSets/FSetBridge.v b/theories/FSets/FSetBridge.v new file mode 100644 index 00000000..3ea50df8 --- /dev/null +++ b/theories/FSets/FSetBridge.v @@ -0,0 +1,750 @@ +(***********************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) +(* \VV/ *************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(***********************************************************************) + +(* $Id: FSetBridge.v 8639 2006-03-16 19:21:55Z letouzey $ *) + +(** * Finite sets library *) + +(** This module implements bridges (as functors) from dependent + to/from non-dependent set signature. *) + +Require Export FSetInterface. +Set Implicit Arguments. +Unset Strict Implicit. +Set Firstorder Depth 2. + +(** * From non-dependent signature [S] to dependent signature [Sdep]. *) + +Module DepOfNodep (M: S) <: Sdep with Module E := M.E. + Import M. + + Module ME := OrderedTypeFacts E. + + Definition empty : {s : t | Empty s}. + Proof. + exists empty; auto. + Qed. + + Definition is_empty : forall s : t, {Empty s} + {~ Empty s}. + Proof. + intros; generalize (is_empty_1 (s:=s)) (is_empty_2 (s:=s)). + case (is_empty s); intuition. + Qed. + + + Definition mem : forall (x : elt) (s : t), {In x s} + {~ In x s}. + Proof. + intros; generalize (mem_1 (s:=s) (x:=x)) (mem_2 (s:=s) (x:=x)). + case (mem x s); intuition. + Qed. + + Definition Add (x : elt) (s s' : t) := + forall y : elt, In y s' <-> E.eq x y \/ In y s. + + Definition add : forall (x : elt) (s : t), {s' : t | Add x s s'}. + Proof. + intros; exists (add x s); auto. + unfold Add in |- *; intuition. + elim (ME.eq_dec x y); auto. + intros; right. + eapply add_3; eauto. + Qed. + + Definition singleton : + forall x : elt, {s : t | forall y : elt, In y s <-> E.eq x y}. + Proof. + intros; exists (singleton x); intuition. + Qed. + + Definition remove : + forall (x : elt) (s : t), + {s' : t | forall y : elt, In y s' <-> ~ E.eq x y /\ In y s}. + Proof. + intros; exists (remove x s); intuition. + absurd (In x (remove x s)); auto. + apply In_1 with y; auto. + elim (ME.eq_dec x y); intros; auto. + absurd (In x (remove x s)); auto. + apply In_1 with y; auto. + eauto. + Qed. + + Definition union : + forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s \/ In x s'}. + Proof. + intros; exists (union s s'); intuition. + Qed. + + Definition inter : + forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ In x s'}. + Proof. + intros; exists (inter s s'); intuition; eauto. + Qed. + + Definition diff : + forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ ~ In x s'}. + Proof. + intros; exists (diff s s'); intuition; eauto. + absurd (In x s'); eauto. + Qed. + + Definition equal : forall s s' : t, {Equal s s'} + {~ Equal s s'}. + Proof. + intros. + generalize (equal_1 (s:=s) (s':=s')) (equal_2 (s:=s) (s':=s')). + case (equal s s'); intuition. + Qed. + + Definition subset : forall s s' : t, {Subset s s'} + {~Subset s s'}. + Proof. + intros. + generalize (subset_1 (s:=s) (s':=s')) (subset_2 (s:=s) (s':=s')). + case (subset s s'); intuition. + Qed. + + Definition elements : + forall s : t, + {l : list elt | ME.Sort l /\ (forall x : elt, In x s <-> ME.In x l)}. + Proof. + intros; exists (elements s); intuition. + Defined. + + Definition fold : + forall (A : Set) (f : elt -> A -> A) (s : t) (i : A), + {r : A | let (l,_) := elements s in + r = fold_left (fun a e => f e a) l i}. + Proof. + intros; exists (fold (A:=A) f s i); exact (fold_1 s i f). + Qed. + + Definition cardinal : + forall s : t, + {r : nat | let (l,_) := elements s in r = length l }. + Proof. + intros; exists (cardinal s); exact (cardinal_1 s). + Qed. + + Definition fdec (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) + (x : elt) := if Pdec x then true else false. + + Lemma compat_P_aux : + forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}), + compat_P E.eq P -> compat_bool E.eq (fdec Pdec). + Proof. + unfold compat_P, compat_bool, fdec in |- *; intros. + generalize (E.eq_sym H0); case (Pdec x); case (Pdec y); firstorder. + Qed. + + Hint Resolve compat_P_aux. + + Definition filter : + forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t), + {s' : t | compat_P E.eq P -> forall x : elt, In x s' <-> In x s /\ P x}. + Proof. + intros. + exists (filter (fdec Pdec) s). + intro H; assert (compat_bool E.eq (fdec Pdec)); auto. + intuition. + eauto. + generalize (filter_2 H0 H1). + unfold fdec in |- *. + case (Pdec x); intuition. + inversion H2. + apply filter_3; auto. + unfold fdec in |- *; simpl in |- *. + case (Pdec x); intuition. + Qed. + + Definition for_all : + forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t), + {compat_P E.eq P -> For_all P s} + {compat_P E.eq P -> ~ For_all P s}. + Proof. + intros. + generalize (for_all_1 (s:=s) (f:=fdec Pdec)) + (for_all_2 (s:=s) (f:=fdec Pdec)). + case (for_all (fdec Pdec) s); unfold For_all in |- *; [ left | right ]; + intros. + assert (compat_bool E.eq (fdec Pdec)); auto. + generalize (H0 H3 (refl_equal _) _ H2). + unfold fdec in |- *. + case (Pdec x); intuition. + inversion H4. + intuition. + absurd (false = true); [ auto with bool | apply H; auto ]. + intro. + unfold fdec in |- *. + case (Pdec x); intuition. + Qed. + + Definition exists_ : + forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t), + {compat_P E.eq P -> Exists P s} + {compat_P E.eq P -> ~ Exists P s}. + Proof. + intros. + generalize (exists_1 (s:=s) (f:=fdec Pdec)) + (exists_2 (s:=s) (f:=fdec Pdec)). + case (exists_ (fdec Pdec) s); unfold Exists in |- *; [ left | right ]; + intros. + elim H0; auto; intros. + exists x; intuition. + generalize H4. + unfold fdec in |- *. + case (Pdec x); intuition. + inversion H2. + intuition. + elim H2; intros. + absurd (false = true); [ auto with bool | apply H; auto ]. + exists x; intuition. + unfold fdec in |- *. + case (Pdec x); intuition. + Qed. + + Definition partition : + forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t), + {partition : t * t | + let (s1, s2) := partition in + compat_P E.eq P -> + For_all P s1 /\ + For_all (fun x => ~ P x) s2 /\ + (forall x : elt, In x s <-> In x s1 \/ In x s2)}. + Proof. + intros. + exists (partition (fdec Pdec) s). + generalize (partition_1 s (f:=fdec Pdec)) (partition_2 s (f:=fdec Pdec)). + case (partition (fdec Pdec) s). + intros s1 s2; simpl in |- *. + intros; assert (compat_bool E.eq (fdec Pdec)); auto. + intros; assert (compat_bool E.eq (fun x => negb (fdec Pdec x))). + generalize H2; unfold compat_bool in |- *; intuition; + apply (f_equal negb); auto. + intuition. + generalize H4; unfold For_all, Equal in |- *; intuition. + elim (H0 x); intros. + assert (fdec Pdec x = true). + eauto. + generalize H8; unfold fdec in |- *; case (Pdec x); intuition. + inversion H9. + generalize H; unfold For_all, Equal in |- *; intuition. + elim (H0 x); intros. + cut ((fun x => negb (fdec Pdec x)) x = true). + unfold fdec in |- *; case (Pdec x); intuition. + change ((fun x => negb (fdec Pdec x)) x = true) in |- *. + apply (filter_2 (s:=s) (x:=x)); auto. + set (b := fdec Pdec x) in *; generalize (refl_equal b); + pattern b at -1 in |- *; case b; unfold b in |- *; + [ left | right ]. + elim (H4 x); intros _ B; apply B; auto. + elim (H x); intros _ B; apply B; auto. + apply filter_3; auto. + rewrite H5; auto. + eapply (filter_1 (s:=s) (x:=x) H2); elim (H4 x); intros B _; apply B; + auto. + eapply (filter_1 (s:=s) (x:=x) H3); elim (H x); intros B _; apply B; auto. + Qed. + + Definition choose : forall s : t, {x : elt | In x s} + {Empty s}. + Proof. + intros. + generalize (choose_1 (s:=s)) (choose_2 (s:=s)). + case (choose s); [ left | right ]; auto. + exists e; auto. + Qed. + + Definition min_elt : + forall s : t, + {x : elt | In x s /\ For_all (fun y => ~ E.lt y x) s} + {Empty s}. + Proof. + intros; + generalize (min_elt_1 (s:=s)) (min_elt_2 (s:=s)) (min_elt_3 (s:=s)). + case (min_elt s); [ left | right ]; auto. + exists e; unfold For_all in |- *; eauto. + Qed. + + Definition max_elt : + forall s : t, + {x : elt | In x s /\ For_all (fun y => ~ E.lt x y) s} + {Empty s}. + Proof. + intros; + generalize (max_elt_1 (s:=s)) (max_elt_2 (s:=s)) (max_elt_3 (s:=s)). + case (max_elt s); [ left | right ]; auto. + exists e; unfold For_all in |- *; eauto. + Qed. + + Module E := E. + + Definition elt := elt. + Definition t := t. + + Definition In := In. + Definition Equal s s' := forall a : elt, In a s <-> In a s'. + Definition Subset s s' := forall a : elt, In a s -> In a s'. + Definition Empty s := forall a : elt, ~ In a s. + Definition For_all (P : elt -> Prop) (s : t) := + forall x : elt, In x s -> P x. + Definition Exists (P : elt -> Prop) (s : t) := + exists x : elt, In x s /\ P x. + + Definition eq_In := In_1. + + Definition eq := Equal. + Definition lt := lt. + Definition eq_refl := eq_refl. + Definition eq_sym := eq_sym. + Definition eq_trans := eq_trans. + Definition lt_trans := lt_trans. + Definition lt_not_eq := lt_not_eq. + Definition compare := compare. + +End DepOfNodep. + + +(** * From dependent signature [Sdep] to non-dependent signature [S]. *) + +Module NodepOfDep (M: Sdep) <: S with Module E := M.E. + Import M. + + Module ME := OrderedTypeFacts E. + + Definition empty : t := let (s, _) := empty in s. + + Lemma empty_1 : Empty empty. + Proof. + unfold empty in |- *; case M.empty; auto. + Qed. + + Definition is_empty (s : t) : bool := + if is_empty s then true else false. + + Lemma is_empty_1 : forall s : t, Empty s -> is_empty s = true. + Proof. + intros; unfold is_empty in |- *; case (M.is_empty s); auto. + Qed. + + Lemma is_empty_2 : forall s : t, is_empty s = true -> Empty s. + Proof. + intro s; unfold is_empty in |- *; case (M.is_empty s); auto. + intros; discriminate H. + Qed. + + Definition mem (x : elt) (s : t) : bool := + if mem x s then true else false. + + Lemma mem_1 : forall (s : t) (x : elt), In x s -> mem x s = true. + Proof. + intros; unfold mem in |- *; case (M.mem x s); auto. + Qed. + + Lemma mem_2 : forall (s : t) (x : elt), mem x s = true -> In x s. + Proof. + intros s x; unfold mem in |- *; case (M.mem x s); auto. + intros; discriminate H. + Qed. + + Definition equal (s s' : t) : bool := + if equal s s' then true else false. + + Lemma equal_1 : forall s s' : t, Equal s s' -> equal s s' = true. + Proof. + intros; unfold equal in |- *; case M.equal; intuition. + Qed. + + Lemma equal_2 : forall s s' : t, equal s s' = true -> Equal s s'. + Proof. + intros s s'; unfold equal in |- *; case (M.equal s s'); intuition; + inversion H. + Qed. + + Definition subset (s s' : t) : bool := + if subset s s' then true else false. + + Lemma subset_1 : forall s s' : t, Subset s s' -> subset s s' = true. + Proof. + intros; unfold subset in |- *; case M.subset; intuition. + Qed. + + Lemma subset_2 : forall s s' : t, subset s s' = true -> Subset s s'. + Proof. + intros s s'; unfold subset in |- *; case (M.subset s s'); intuition; + inversion H. + Qed. + + Definition choose (s : t) : option elt := + match choose s with + | inleft (exist x _) => Some x + | inright _ => None + end. + + Lemma choose_1 : forall (s : t) (x : elt), choose s = Some x -> In x s. + Proof. + intros s x; unfold choose in |- *; case (M.choose s). + simple destruct s0; intros; injection H; intros; subst; auto. + intros; discriminate H. + Qed. + + Lemma choose_2 : forall s : t, choose s = None -> Empty s. + Proof. + intro s; unfold choose in |- *; case (M.choose s); auto. + simple destruct s0; intros; discriminate H. + Qed. + + Definition elements (s : t) : list elt := let (l, _) := elements s in l. + + Lemma elements_1 : forall (s : t) (x : elt), In x s -> ME.In x (elements s). + Proof. + intros; unfold elements in |- *; case (M.elements s); firstorder. + Qed. + + Lemma elements_2 : forall (s : t) (x : elt), ME.In x (elements s) -> In x s. + Proof. + intros s x; unfold elements in |- *; case (M.elements s); firstorder. + Qed. + + Lemma elements_3 : forall s : t, ME.Sort (elements s). + Proof. + intros; unfold elements in |- *; case (M.elements s); firstorder. + Qed. + + Definition min_elt (s : t) : option elt := + match min_elt s with + | inleft (exist x _) => Some x + | inright _ => None + end. + + Lemma min_elt_1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s. + Proof. + intros s x; unfold min_elt in |- *; case (M.min_elt s). + simple destruct s0; intros; injection H; intros; subst; intuition. + intros; discriminate H. + Qed. + + Lemma min_elt_2 : + forall (s : t) (x y : elt), min_elt s = Some x -> In y s -> ~ E.lt y x. + Proof. + intros s x y; unfold min_elt in |- *; case (M.min_elt s). + unfold For_all in |- *; simple destruct s0; intros; injection H; intros; + subst; firstorder. + intros; discriminate H. + Qed. + + Lemma min_elt_3 : forall s : t, min_elt s = None -> Empty s. + Proof. + intros s; unfold min_elt in |- *; case (M.min_elt s); auto. + simple destruct s0; intros; discriminate H. + Qed. + + Definition max_elt (s : t) : option elt := + match max_elt s with + | inleft (exist x _) => Some x + | inright _ => None + end. + + Lemma max_elt_1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s. + Proof. + intros s x; unfold max_elt in |- *; case (M.max_elt s). + simple destruct s0; intros; injection H; intros; subst; intuition. + intros; discriminate H. + Qed. + + Lemma max_elt_2 : + forall (s : t) (x y : elt), max_elt s = Some x -> In y s -> ~ E.lt x y. + Proof. + intros s x y; unfold max_elt in |- *; case (M.max_elt s). + unfold For_all in |- *; simple destruct s0; intros; injection H; intros; + subst; firstorder. + intros; discriminate H. + Qed. + + Lemma max_elt_3 : forall s : t, max_elt s = None -> Empty s. + Proof. + intros s; unfold max_elt in |- *; case (M.max_elt s); auto. + simple destruct s0; intros; discriminate H. + Qed. + + Definition add (x : elt) (s : t) : t := let (s', _) := add x s in s'. + + Lemma add_1 : forall (s : t) (x y : elt), E.eq x y -> In y (add x s). + Proof. + intros; unfold add in |- *; case (M.add x s); unfold Add in |- *; + firstorder. + Qed. + + Lemma add_2 : forall (s : t) (x y : elt), In y s -> In y (add x s). + Proof. + intros; unfold add in |- *; case (M.add x s); unfold Add in |- *; + firstorder. + Qed. + + Lemma add_3 : + forall (s : t) (x y : elt), ~ E.eq x y -> In y (add x s) -> In y s. + Proof. + intros s x y; unfold add in |- *; case (M.add x s); unfold Add in |- *; + firstorder. + Qed. + + Definition remove (x : elt) (s : t) : t := let (s', _) := remove x s in s'. + + Lemma remove_1 : forall (s : t) (x y : elt), E.eq x y -> ~ In y (remove x s). + Proof. + intros; unfold remove in |- *; case (M.remove x s); firstorder. + Qed. + + Lemma remove_2 : + forall (s : t) (x y : elt), ~ E.eq x y -> In y s -> In y (remove x s). + Proof. + intros; unfold remove in |- *; case (M.remove x s); firstorder. + Qed. + + Lemma remove_3 : forall (s : t) (x y : elt), In y (remove x s) -> In y s. + Proof. + intros s x y; unfold remove in |- *; case (M.remove x s); firstorder. + Qed. + + Definition singleton (x : elt) : t := let (s, _) := singleton x in s. + + Lemma singleton_1 : forall x y : elt, In y (singleton x) -> E.eq x y. + Proof. + intros x y; unfold singleton in |- *; case (M.singleton x); firstorder. + Qed. + + Lemma singleton_2 : forall x y : elt, E.eq x y -> In y (singleton x). + Proof. + intros x y; unfold singleton in |- *; case (M.singleton x); firstorder. + Qed. + + Definition union (s s' : t) : t := let (s'', _) := union s s' in s''. + + Lemma union_1 : + forall (s s' : t) (x : elt), In x (union s s') -> In x s \/ In x s'. + Proof. + intros s s' x; unfold union in |- *; case (M.union s s'); firstorder. + Qed. + + Lemma union_2 : forall (s s' : t) (x : elt), In x s -> In x (union s s'). + Proof. + intros s s' x; unfold union in |- *; case (M.union s s'); firstorder. + Qed. + + Lemma union_3 : forall (s s' : t) (x : elt), In x s' -> In x (union s s'). + Proof. + intros s s' x; unfold union in |- *; case (M.union s s'); firstorder. + Qed. + + Definition inter (s s' : t) : t := let (s'', _) := inter s s' in s''. + + Lemma inter_1 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s. + Proof. + intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder. + Qed. + + Lemma inter_2 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s'. + Proof. + intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder. + Qed. + + Lemma inter_3 : + forall (s s' : t) (x : elt), In x s -> In x s' -> In x (inter s s'). + Proof. + intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder. + Qed. + + Definition diff (s s' : t) : t := let (s'', _) := diff s s' in s''. + + Lemma diff_1 : forall (s s' : t) (x : elt), In x (diff s s') -> In x s. + Proof. + intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder. + Qed. + + Lemma diff_2 : forall (s s' : t) (x : elt), In x (diff s s') -> ~ In x s'. + Proof. + intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder. + Qed. + + Lemma diff_3 : + forall (s s' : t) (x : elt), In x s -> ~ In x s' -> In x (diff s s'). + Proof. + intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder. + Qed. + + Definition cardinal (s : t) : nat := let (f, _) := cardinal s in f. + + Lemma cardinal_1 : forall s, cardinal s = length (elements s). + Proof. + intros; unfold cardinal in |- *; case (M.cardinal s); unfold elements in *; + destruct (M.elements s); auto. + Qed. + + Definition fold (B : Set) (f : elt -> B -> B) (i : t) + (s : B) : B := let (fold, _) := fold f i s in fold. + + Lemma fold_1 : + forall (s : t) (A : Set) (i : A) (f : elt -> A -> A), + fold f s i = fold_left (fun a e => f e a) (elements s) i. + Proof. + intros; unfold fold in |- *; case (M.fold f s i); unfold elements in *; + destruct (M.elements s); auto. + Qed. + + Definition f_dec : + forall (f : elt -> bool) (x : elt), {f x = true} + {f x <> true}. + Proof. + intros; case (f x); auto with bool. + Defined. + + Lemma compat_P_aux : + forall f : elt -> bool, + compat_bool E.eq f -> compat_P E.eq (fun x => f x = true). + Proof. + unfold compat_bool, compat_P in |- *; intros; rewrite <- H1; firstorder. + Qed. + + Hint Resolve compat_P_aux. + + Definition filter (f : elt -> bool) (s : t) : t := + let (s', _) := filter (P:=fun x => f x = true) (f_dec f) s in s'. + + Lemma filter_1 : + forall (s : t) (x : elt) (f : elt -> bool), + compat_bool E.eq f -> In x (filter f s) -> In x s. + Proof. + intros s x f; unfold filter in |- *; case M.filter; intuition. + generalize (i (compat_P_aux H)); firstorder. + Qed. + + Lemma filter_2 : + forall (s : t) (x : elt) (f : elt -> bool), + compat_bool E.eq f -> In x (filter f s) -> f x = true. + Proof. + intros s x f; unfold filter in |- *; case M.filter; intuition. + generalize (i (compat_P_aux H)); firstorder. + Qed. + + Lemma filter_3 : + forall (s : t) (x : elt) (f : elt -> bool), + compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s). + Proof. + intros s x f; unfold filter in |- *; case M.filter; intuition. + generalize (i (compat_P_aux H)); firstorder. + Qed. + + Definition for_all (f : elt -> bool) (s : t) : bool := + if for_all (P:=fun x => f x = true) (f_dec f) s + then true + else false. + + Lemma for_all_1 : + forall (s : t) (f : elt -> bool), + compat_bool E.eq f -> + For_all (fun x => f x = true) s -> for_all f s = true. + Proof. + intros s f; unfold for_all in |- *; case M.for_all; intuition; elim n; + auto. + Qed. + + Lemma for_all_2 : + forall (s : t) (f : elt -> bool), + compat_bool E.eq f -> + for_all f s = true -> For_all (fun x => f x = true) s. + Proof. + intros s f; unfold for_all in |- *; case M.for_all; intuition; + inversion H0. + Qed. + + Definition exists_ (f : elt -> bool) (s : t) : bool := + if exists_ (P:=fun x => f x = true) (f_dec f) s + then true + else false. + + Lemma exists_1 : + forall (s : t) (f : elt -> bool), + compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true. + Proof. + intros s f; unfold exists_ in |- *; case M.exists_; intuition; elim n; + auto. + Qed. + + Lemma exists_2 : + forall (s : t) (f : elt -> bool), + compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s. + Proof. + intros s f; unfold exists_ in |- *; case M.exists_; intuition; + inversion H0. + Qed. + + Definition partition (f : elt -> bool) (s : t) : + t * t := + let (p, _) := partition (P:=fun x => f x = true) (f_dec f) s in p. + + Lemma partition_1 : + forall (s : t) (f : elt -> bool), + compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s). + Proof. + intros s f; unfold partition in |- *; case M.partition. + intro p; case p; clear p; intros s1 s2 H C. + generalize (H (compat_P_aux C)); clear H; intro H. + simpl in |- *; unfold Equal in |- *; intuition. + apply filter_3; firstorder. + elim (H2 a); intros. + assert (In a s). + eapply filter_1; eauto. + elim H3; intros; auto. + absurd (f a = true). + exact (H a H6). + eapply filter_2; eauto. + Qed. + + Lemma partition_2 : + forall (s : t) (f : elt -> bool), + compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s). + Proof. + intros s f; unfold partition in |- *; case M.partition. + intro p; case p; clear p; intros s1 s2 H C. + generalize (H (compat_P_aux C)); clear H; intro H. + assert (D : compat_bool E.eq (fun x => negb (f x))). + generalize C; unfold compat_bool in |- *; intros; apply (f_equal negb); + auto. + simpl in |- *; unfold Equal in |- *; intuition. + apply filter_3; firstorder. + elim (H2 a); intros. + assert (In a s). + eapply filter_1; eauto. + elim H3; intros; auto. + absurd (f a = true). + intro. + generalize (filter_2 D H1). + rewrite H7; intros H8; inversion H8. + exact (H0 a H6). + Qed. + + + Module E := E. + Definition elt := elt. + Definition t := t. + + Definition In := In. + Definition Equal s s' := forall a : elt, In a s <-> In a s'. + Definition Subset s s' := forall a : elt, In a s -> In a s'. + Definition Add (x : elt) (s s' : t) := + forall y : elt, In y s' <-> E.eq y x \/ In y s. + Definition Empty s := forall a : elt, ~ In a s. + Definition For_all (P : elt -> Prop) (s : t) := + forall x : elt, In x s -> P x. + Definition Exists (P : elt -> Prop) (s : t) := + exists x : elt, In x s /\ P x. + + Definition In_1 := eq_In. + + Definition eq := Equal. + Definition lt := lt. + Definition eq_refl := eq_refl. + Definition eq_sym := eq_sym. + Definition eq_trans := eq_trans. + Definition lt_trans := lt_trans. + Definition lt_not_eq := lt_not_eq. + Definition compare := compare. + +End NodepOfDep. |