summaryrefslogtreecommitdiff
path: root/theories/FSets/FMapList.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FMapList.v')
-rw-r--r--theories/FSets/FMapList.v466
1 files changed, 232 insertions, 234 deletions
diff --git a/theories/FSets/FMapList.v b/theories/FSets/FMapList.v
index 0ec5ef36..56fc35d8 100644
--- a/theories/FSets/FMapList.v
+++ b/theories/FSets/FMapList.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FMapList.v 11699 2008-12-18 11:49:08Z letouzey $ *)
+(* $Id$ *)
(** * Finite map library *)
@@ -30,7 +30,7 @@ Definition t (elt:Type) := list (X.t * elt).
Section Elt.
Variable elt : Type.
-Notation eqk := (eqk (elt:=elt)).
+Notation eqk := (eqk (elt:=elt)).
Notation eqke := (eqke (elt:=elt)).
Notation ltk := (ltk (elt:=elt)).
Notation MapsTo := (MapsTo (elt:=elt)).
@@ -45,7 +45,7 @@ Definition empty : t elt := nil.
Definition Empty m := forall (a : key)(e:elt) , ~ MapsTo a e m.
Lemma empty_1 : Empty empty.
-Proof.
+Proof.
unfold Empty,empty.
intros a e.
intro abs.
@@ -54,7 +54,7 @@ Qed.
Hint Resolve empty_1.
Lemma empty_sorted : Sort empty.
-Proof.
+Proof.
unfold empty; auto.
Qed.
@@ -62,7 +62,7 @@ Qed.
Definition is_empty (l : t elt) : bool := if l then true else false.
-Lemma is_empty_1 :forall m, Empty m -> is_empty m = true.
+Lemma is_empty_1 :forall m, Empty m -> is_empty m = true.
Proof.
unfold Empty, PX.MapsTo.
intros m.
@@ -72,7 +72,7 @@ Proof.
Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
-Proof.
+Proof.
intros m.
case m;auto.
intros p l abs.
@@ -93,12 +93,12 @@ Function mem (k : key) (s : t elt) {struct s} : bool :=
end.
Lemma mem_1 : forall m (Hm:Sort m) x, In x m -> mem x m = true.
-Proof.
- intros m Hm x; generalize Hm; clear Hm.
+Proof.
+ intros m Hm x; generalize Hm; clear Hm.
functional induction (mem x m);intros sorted belong1;trivial.
-
+
inversion belong1. inversion H.
-
+
absurd (In x ((k', _x) :: l));try assumption.
apply Sort_Inf_NotIn with _x;auto.
@@ -107,13 +107,13 @@ Proof.
elim (In_inv belong1);auto.
intro abs.
absurd (X.eq x k');auto.
-Qed.
+Qed.
-Lemma mem_2 : forall m (Hm:Sort m) x, mem x m = true -> In x m.
+Lemma mem_2 : forall m (Hm:Sort m) x, mem x m = true -> In x m.
Proof.
intros m Hm x; generalize Hm; clear Hm; unfold PX.In,PX.MapsTo.
functional induction (mem x m); intros sorted hyp;try ((inversion hyp);fail).
- exists _x; auto.
+ exists _x; auto.
induction IHb; auto.
exists x0; auto.
inversion_clear sorted; auto.
@@ -124,7 +124,7 @@ Qed.
Function find (k:key) (s: t elt) {struct s} : option elt :=
match s with
| nil => None
- | (k',x)::s' =>
+ | (k',x)::s' =>
match X.compare k k' with
| LT _ => None
| EQ _ => Some x
@@ -138,7 +138,7 @@ Proof.
functional induction (find x m);simpl;intros e' eqfind; inversion eqfind; auto.
Qed.
-Lemma find_1 : forall m (Hm:Sort m) x e, MapsTo x e m -> find x m = Some e.
+Lemma find_1 : forall m (Hm:Sort m) x e, MapsTo x e m -> find x m = Some e.
Proof.
intros m Hm x e; generalize Hm; clear Hm; unfold PX.MapsTo.
functional induction (find x m);simpl; subst; try clear H_eq_1.
@@ -150,9 +150,9 @@ Proof.
clear e1;generalize (Sort_In_cons_1 Hm (InA_eqke_eqk H0)); compute; order.
clear e1;inversion_clear 2.
- compute in H0; destruct H0; intuition congruence.
+ compute in H0; destruct H0; intuition congruence.
generalize (Sort_In_cons_1 Hm (InA_eqke_eqk H0)); compute; order.
-
+
clear e1; do 2 inversion_clear 1; auto.
compute in H2; destruct H2; order.
Qed.
@@ -177,10 +177,10 @@ Proof.
functional induction (add x e m);simpl;auto.
Qed.
-Lemma add_2 : forall m x y e e',
+Lemma add_2 : forall m x y e e',
~ X.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
- intros m x y e e'.
+ intros m x y e e'.
generalize y e; clear y e; unfold PX.MapsTo.
functional induction (add x e' m) ;simpl;auto; clear e0.
subst;auto.
@@ -191,7 +191,7 @@ Proof.
auto.
intros y' e'' eqky'; inversion_clear 1; intuition.
Qed.
-
+
Lemma add_3 : forall m x y e e',
~ X.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
@@ -200,15 +200,15 @@ Proof.
functional induction (add x e' m);simpl; intros.
apply (In_inv_3 H0); compute; auto.
apply (In_inv_3 H0); compute; auto.
- constructor 2; apply (In_inv_3 H0); compute; auto.
+ constructor 2; apply (In_inv_3 H0); compute; auto.
inversion_clear H0; auto.
Qed.
-Lemma add_Inf : forall (m:t elt)(x x':key)(e e':elt),
+Lemma add_Inf : forall (m:t elt)(x x':key)(e e':elt),
Inf (x',e') m -> ltk (x',e') (x,e) -> Inf (x',e') (add x e m).
Proof.
- induction m.
+ induction m.
simpl; intuition.
intros.
destruct a as (x'',e'').
@@ -227,7 +227,7 @@ Proof.
simpl; case (X.compare x x'); intuition; inversion_clear Hm; auto.
constructor; auto.
apply Inf_eq with (x',e'); auto.
-Qed.
+Qed.
(** * [remove] *)
@@ -240,48 +240,48 @@ Function remove (k : key) (s : t elt) {struct s} : t elt :=
| EQ _ => l
| GT _ => (k',x) :: remove k l
end
- end.
+ end.
Lemma remove_1 : forall m (Hm:Sort m) x y, X.eq x y -> ~ In y (remove x m).
Proof.
intros m Hm x y; generalize Hm; clear Hm.
functional induction (remove x m);simpl;intros;subst.
-
+
red; inversion 1; inversion H1.
apply Sort_Inf_NotIn with x0; auto.
clear e0;constructor; compute; order.
-
+
clear e0;inversion_clear Hm.
- apply Sort_Inf_NotIn with x0; auto.
+ apply Sort_Inf_NotIn with x0; auto.
apply Inf_eq with (k',x0);auto; compute; apply X.eq_trans with x; auto.
clear e0;inversion_clear Hm.
assert (notin:~ In y (remove x l)) by auto.
intros (x1,abs).
- inversion_clear abs.
+ inversion_clear abs.
compute in H2; destruct H2; order.
apply notin; exists x1; auto.
Qed.
-Lemma remove_2 : forall m (Hm:Sort m) x y e,
+Lemma remove_2 : forall m (Hm:Sort m) x y e,
~ X.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof.
intros m Hm x y e; generalize Hm; clear Hm; unfold PX.MapsTo.
- functional induction (remove x m);subst;auto;
- match goal with
+ functional induction (remove x m);subst;auto;
+ match goal with
| [H: X.compare _ _ = _ |- _ ] => clear H
| _ => idtac
end.
inversion_clear 3; auto.
compute in H1; destruct H1; order.
-
+
inversion_clear 1; inversion_clear 2; auto.
Qed.
-Lemma remove_3 : forall m (Hm:Sort m) x y e,
+Lemma remove_3 : forall m (Hm:Sort m) x y e,
MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
intros m Hm x y e; generalize Hm; clear Hm; unfold PX.MapsTo.
@@ -289,10 +289,10 @@ Proof.
inversion_clear 1; inversion_clear 1; auto.
Qed.
-Lemma remove_Inf : forall (m:t elt)(Hm : Sort m)(x x':key)(e':elt),
+Lemma remove_Inf : forall (m:t elt)(Hm : Sort m)(x x':key)(e':elt),
Inf (x',e') m -> Inf (x',e') (remove x m).
Proof.
- induction m.
+ induction m.
simpl; intuition.
intros.
destruct a as (x'',e'').
@@ -311,31 +311,31 @@ Proof.
intros.
destruct a as (x',e').
simpl; case (X.compare x x'); intuition; inversion_clear Hm; auto.
-Qed.
+Qed.
(** * [elements] *)
Definition elements (m: t elt) := m.
-Lemma elements_1 : forall m x e,
+Lemma elements_1 : forall m x e,
MapsTo x e m -> InA eqke (x,e) (elements m).
Proof.
auto.
Qed.
-Lemma elements_2 : forall m x e,
+Lemma elements_2 : forall m x e,
InA eqke (x,e) (elements m) -> MapsTo x e m.
-Proof.
+Proof.
auto.
Qed.
-Lemma elements_3 : forall m (Hm:Sort m), sort ltk (elements m).
-Proof.
+Lemma elements_3 : forall m (Hm:Sort m), sort ltk (elements m).
+Proof.
auto.
Qed.
-Lemma elements_3w : forall m (Hm:Sort m), NoDupA eqk (elements m).
-Proof.
+Lemma elements_3w : forall m (Hm:Sort m), NoDupA eqk (elements m).
+Proof.
intros.
apply Sort_NoDupA.
apply elements_3; auto.
@@ -351,30 +351,30 @@ Function fold (A:Type)(f:key->elt->A->A)(m:t elt) (acc:A) {struct m} : A :=
Lemma fold_1 : forall m (A:Type)(i:A)(f:key->elt->A->A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
-Proof.
+Proof.
intros; functional induction (fold f m i); auto.
Qed.
(** * [equal] *)
-Function equal (cmp:elt->elt->bool)(m m' : t elt) { struct m } : bool :=
- match m, m' with
+Function equal (cmp:elt->elt->bool)(m m' : t elt) {struct m} : bool :=
+ match m, m' with
| nil, nil => true
- | (x,e)::l, (x',e')::l' =>
- match X.compare x x' with
+ | (x,e)::l, (x',e')::l' =>
+ match X.compare x x' with
| EQ _ => cmp e e' && equal cmp l l'
| _ => false
- end
- | _, _ => false
+ end
+ | _, _ => false
end.
-Definition Equivb cmp m m' :=
- (forall k, In k m <-> In k m') /\
- (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
+Definition Equivb cmp m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
-Lemma equal_1 : forall m (Hm:Sort m) m' (Hm': Sort m') cmp,
- Equivb cmp m m' -> equal cmp m m' = true.
-Proof.
+Lemma equal_1 : forall m (Hm:Sort m) m' (Hm': Sort m') cmp,
+ Equivb cmp m m' -> equal cmp m m' = true.
+Proof.
intros m Hm m' Hm' cmp; generalize Hm Hm'; clear Hm Hm'.
functional induction (equal cmp m m'); simpl; subst;auto; unfold Equivb;
intuition; subst.
@@ -407,7 +407,7 @@ Proof.
destruct (X.compare x x'); try contradiction; clear y.
destruct (H0 x).
- assert (In x ((x',e')::l')).
+ assert (In x ((x',e')::l')).
apply H; auto.
exists e; auto.
destruct (In_inv H3).
@@ -418,7 +418,7 @@ Proof.
elim (Sort_Inf_NotIn H5 H7 H4).
destruct (H0 x').
- assert (In x' ((x,e)::l)).
+ assert (In x' ((x,e)::l)).
apply H2; auto.
exists e'; auto.
destruct (In_inv H3).
@@ -430,7 +430,7 @@ Proof.
destruct m;
destruct m';try contradiction.
-
+
clear H1;destruct p as (k,e).
destruct (H0 k).
destruct H1.
@@ -447,18 +447,18 @@ Proof.
Qed.
-Lemma equal_2 : forall m (Hm:Sort m) m' (Hm:Sort m') cmp,
+Lemma equal_2 : forall m (Hm:Sort m) m' (Hm:Sort m') cmp,
equal cmp m m' = true -> Equivb cmp m m'.
Proof.
intros m Hm m' Hm' cmp; generalize Hm Hm'; clear Hm Hm'.
- functional induction (equal cmp m m'); simpl; subst;auto; unfold Equivb;
- intuition; try discriminate; subst;
+ functional induction (equal cmp m m'); simpl; subst;auto; unfold Equivb;
+ intuition; try discriminate; subst;
try match goal with H: X.compare _ _ = _ |- _ => clear H end.
inversion H0.
inversion_clear Hm;inversion_clear Hm'.
- destruct (andb_prop _ _ H); clear H.
+ destruct (andb_prop _ _ H); clear H.
destruct (IHb H1 H3 H6).
destruct (In_inv H0).
exists e'; constructor; split; trivial; apply X.eq_trans with x; auto.
@@ -467,7 +467,7 @@ Proof.
exists e''; auto.
inversion_clear Hm;inversion_clear Hm'.
- destruct (andb_prop _ _ H); clear H.
+ destruct (andb_prop _ _ H); clear H.
destruct (IHb H1 H3 H6).
destruct (In_inv H0).
exists e; constructor; split; trivial; apply X.eq_trans with x'; auto.
@@ -476,15 +476,15 @@ Proof.
exists e''; auto.
inversion_clear Hm;inversion_clear Hm'.
- destruct (andb_prop _ _ H); clear H.
+ destruct (andb_prop _ _ H); clear H.
destruct (IHb H2 H4 H7).
inversion_clear H0.
destruct H9; simpl in *; subst.
- inversion_clear H1.
+ inversion_clear H1.
destruct H9; simpl in *; subst; auto.
elim (Sort_Inf_NotIn H4 H5).
exists e'0; apply MapsTo_eq with k; auto; order.
- inversion_clear H1.
+ inversion_clear H1.
destruct H0; simpl in *; subst; auto.
elim (Sort_Inf_NotIn H2 H3).
exists e0; apply MapsTo_eq with k; auto; order.
@@ -494,7 +494,7 @@ Qed.
(** This lemma isn't part of the spec of [Equivb], but is used in [FMapAVL] *)
Lemma equal_cons : forall cmp l1 l2 x y, Sort (x::l1) -> Sort (y::l2) ->
- eqk x y -> cmp (snd x) (snd y) = true ->
+ eqk x y -> cmp (snd x) (snd y) = true ->
(Equivb cmp l1 l2 <-> Equivb cmp (x :: l1) (y :: l2)).
Proof.
intros.
@@ -517,38 +517,38 @@ Qed.
Variable elt':Type.
(** * [map] and [mapi] *)
-
-Fixpoint map (f:elt -> elt') (m:t elt) {struct m} : t elt' :=
+
+Fixpoint map (f:elt -> elt') (m:t elt) : t elt' :=
match m with
| nil => nil
| (k,e)::m' => (k,f e) :: map f m'
end.
-Fixpoint mapi (f: key -> elt -> elt') (m:t elt) {struct m} : t elt' :=
+Fixpoint mapi (f: key -> elt -> elt') (m:t elt) : t elt' :=
match m with
| nil => nil
| (k,e)::m' => (k,f k e) :: mapi f m'
end.
End Elt.
-Section Elt2.
-(* A new section is necessary for previous definitions to work
+Section Elt2.
+(* A new section is necessary for previous definitions to work
with different [elt], especially [MapsTo]... *)
-
+
Variable elt elt' : Type.
(** Specification of [map] *)
-Lemma map_1 : forall (m:t elt)(x:key)(e:elt)(f:elt->elt'),
+Lemma map_1 : forall (m:t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
intros m x e f.
(* functional induction map elt elt' f m. *) (* Marche pas ??? *)
induction m.
inversion 1.
-
+
destruct a as (x',e').
- simpl.
+ simpl.
inversion_clear 1.
constructor 1.
unfold eqke in *; simpl in *; intuition congruence.
@@ -556,15 +556,15 @@ Proof.
unfold MapsTo in *; auto.
Qed.
-Lemma map_2 : forall (m:t elt)(x:key)(f:elt->elt'),
+Lemma map_2 : forall (m:t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof.
- intros m x f.
+ intros m x f.
(* functional induction map elt elt' f m. *) (* Marche pas ??? *)
induction m; simpl.
intros (e,abs).
inversion abs.
-
+
destruct a as (x',e).
intros hyp.
inversion hyp. clear hyp.
@@ -578,9 +578,9 @@ Proof.
Qed.
Lemma map_lelistA : forall (m: t elt)(x:key)(e:elt)(e':elt')(f:elt->elt'),
- lelistA (@ltk elt) (x,e) m ->
+ lelistA (@ltk elt) (x,e) m ->
lelistA (@ltk elt') (x,e') (map f m).
-Proof.
+Proof.
induction m; simpl; auto.
intros.
destruct a as (x0,e0).
@@ -589,30 +589,30 @@ Qed.
Hint Resolve map_lelistA.
-Lemma map_sorted : forall (m: t elt)(Hm : sort (@ltk elt) m)(f:elt -> elt'),
+Lemma map_sorted : forall (m: t elt)(Hm : sort (@ltk elt) m)(f:elt -> elt'),
sort (@ltk elt') (map f m).
-Proof.
+Proof.
induction m; simpl; auto.
intros.
destruct a as (x',e').
inversion_clear Hm.
constructor; auto.
exact (map_lelistA _ _ H0).
-Qed.
-
+Qed.
+
(** Specification of [mapi] *)
-Lemma mapi_1 : forall (m:t elt)(x:key)(e:elt)(f:key->elt->elt'),
- MapsTo x e m ->
+Lemma mapi_1 : forall (m:t elt)(x:key)(e:elt)(f:key->elt->elt'),
+ MapsTo x e m ->
exists y, X.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
intros m x e f.
(* functional induction mapi elt elt' f m. *) (* Marche pas ??? *)
induction m.
inversion 1.
-
+
destruct a as (x',e').
- simpl.
+ simpl.
inversion_clear 1.
exists x'.
destruct H0; simpl in *.
@@ -621,18 +621,18 @@ Proof.
unfold eqke in *; simpl in *; intuition congruence.
destruct IHm as (y, hyp); auto.
exists y; intuition.
-Qed.
+Qed.
-Lemma mapi_2 : forall (m:t elt)(x:key)(f:key->elt->elt'),
+Lemma mapi_2 : forall (m:t elt)(x:key)(f:key->elt->elt'),
In x (mapi f m) -> In x m.
Proof.
- intros m x f.
+ intros m x f.
(* functional induction mapi elt elt' f m. *) (* Marche pas ??? *)
induction m; simpl.
intros (e,abs).
inversion abs.
-
+
destruct a as (x',e).
intros hyp.
inversion hyp. clear hyp.
@@ -646,9 +646,9 @@ Proof.
Qed.
Lemma mapi_lelistA : forall (m: t elt)(x:key)(e:elt)(f:key->elt->elt'),
- lelistA (@ltk elt) (x,e) m ->
+ lelistA (@ltk elt) (x,e) m ->
lelistA (@ltk elt') (x,f x e) (mapi f m).
-Proof.
+Proof.
induction m; simpl; auto.
intros.
destruct a as (x',e').
@@ -657,7 +657,7 @@ Qed.
Hint Resolve mapi_lelistA.
-Lemma mapi_sorted : forall m (Hm : sort (@ltk elt) m)(f: key ->elt -> elt'),
+Lemma mapi_sorted : forall m (Hm : sort (@ltk elt) m)(f: key ->elt -> elt'),
sort (@ltk elt') (mapi f m).
Proof.
induction m; simpl; auto.
@@ -666,7 +666,7 @@ Proof.
inversion_clear Hm; auto.
Qed.
-End Elt2.
+End Elt2.
Section Elt3.
(** * [map2] *)
@@ -674,27 +674,27 @@ Section Elt3.
Variable elt elt' elt'' : Type.
Variable f : option elt -> option elt' -> option elt''.
-Definition option_cons (A:Type)(k:key)(o:option A)(l:list (key*A)) :=
- match o with
+Definition option_cons (A:Type)(k:key)(o:option A)(l:list (key*A)) :=
+ match o with
| Some e => (k,e)::l
| None => l
end.
-Fixpoint map2_l (m : t elt) : t elt'' :=
- match m with
- | nil => nil
+Fixpoint map2_l (m : t elt) : t elt'' :=
+ match m with
+ | nil => nil
| (k,e)::l => option_cons k (f (Some e) None) (map2_l l)
- end.
+ end.
-Fixpoint map2_r (m' : t elt') : t elt'' :=
- match m' with
- | nil => nil
+Fixpoint map2_r (m' : t elt') : t elt'' :=
+ match m' with
+ | nil => nil
| (k,e')::l' => option_cons k (f None (Some e')) (map2_r l')
- end.
+ end.
Fixpoint map2 (m : t elt) : t elt' -> t elt'' :=
match m with
- | nil => map2_r
+ | nil => map2_r
| (k,e) :: l =>
fix map2_aux (m' : t elt') : t elt'' :=
match m' with
@@ -706,7 +706,7 @@ Fixpoint map2 (m : t elt) : t elt' -> t elt'' :=
| GT _ => option_cons k' (f None (Some e')) (map2_aux l')
end
end
- end.
+ end.
Notation oee' := (option elt * option elt')%type.
@@ -724,14 +724,14 @@ Fixpoint combine (m : t elt) : t elt' -> t oee' :=
| GT _ => (k',(None,Some e'))::combine_aux l'
end
end
- end.
+ end.
-Definition fold_right_pair (A B C:Type)(f: A->B->C->C)(l:list (A*B))(i:C) :=
+Definition fold_right_pair (A B C:Type)(f: A->B->C->C)(l:list (A*B))(i:C) :=
List.fold_right (fun p => f (fst p) (snd p)) i l.
-Definition map2_alt m m' :=
- let m0 : t oee' := combine m m' in
- let m1 : t (option elt'') := map (fun p => f (fst p) (snd p)) m0 in
+Definition map2_alt m m' :=
+ let m0 : t oee' := combine m m' in
+ let m1 : t (option elt'') := map (fun p => f (fst p) (snd p)) m0 in
fold_right_pair (option_cons (A:=elt'')) m1 nil.
Lemma map2_alt_equiv : forall m m', map2_alt m m' = map2 m m'.
@@ -758,20 +758,20 @@ Proof.
apply IHm'.
Qed.
-Lemma combine_lelistA :
- forall m m' (x:key)(e:elt)(e':elt')(e'':oee'),
- lelistA (@ltk elt) (x,e) m ->
- lelistA (@ltk elt') (x,e') m' ->
+Lemma combine_lelistA :
+ forall m m' (x:key)(e:elt)(e':elt')(e'':oee'),
+ lelistA (@ltk elt) (x,e) m ->
+ lelistA (@ltk elt') (x,e') m' ->
lelistA (@ltk oee') (x,e'') (combine m m').
Proof.
- induction m.
+ induction m.
intros.
simpl.
exact (map_lelistA _ _ H0).
- induction m'.
+ induction m'.
intros.
destruct a.
- replace (combine ((t0, e0) :: m) nil) with
+ replace (combine ((t0, e0) :: m) nil) with
(map (fun e => (Some e,None (A:=elt'))) ((t0,e0)::m)); auto.
exact (map_lelistA _ _ H).
intros.
@@ -784,18 +784,18 @@ Proof.
Qed.
Hint Resolve combine_lelistA.
-Lemma combine_sorted :
- forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m'),
+Lemma combine_sorted :
+ forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m'),
sort (@ltk oee') (combine m m').
Proof.
- induction m.
+ induction m.
intros; clear Hm.
simpl.
apply map_sorted; auto.
- induction m'.
+ induction m'.
intros; clear Hm'.
destruct a.
- replace (combine ((t0, e) :: m) nil) with
+ replace (combine ((t0, e) :: m) nil) with
(map (fun e => (Some e,None (A:=elt'))) ((t0,e)::m)); auto.
apply map_sorted; auto.
intros.
@@ -805,11 +805,11 @@ Proof.
inversion_clear Hm.
constructor; auto.
assert (lelistA (ltk (elt:=elt')) (k, e') ((k',e')::m')) by auto.
- exact (combine_lelistA _ H0 H1).
+ exact (combine_lelistA _ H0 H1).
inversion_clear Hm; inversion_clear Hm'.
constructor; auto.
assert (lelistA (ltk (elt:=elt')) (k, e') m') by (apply Inf_eq with (k',e'); auto).
- exact (combine_lelistA _ H0 H3).
+ exact (combine_lelistA _ H0 H3).
inversion_clear Hm; inversion_clear Hm'.
constructor; auto.
change (lelistA (ltk (elt:=oee')) (k', (None, Some e'))
@@ -818,8 +818,8 @@ Proof.
exact (combine_lelistA _ H3 H2).
Qed.
-Lemma map2_sorted :
- forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m'),
+Lemma map2_sorted :
+ forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m'),
sort (@ltk elt'') (map2 m m').
Proof.
intros.
@@ -829,7 +829,7 @@ Proof.
set (l0:=combine m m') in *; clearbody l0.
set (f':= fun p : oee' => f (fst p) (snd p)).
assert (H1:=map_sorted (elt' := option elt'') H0 f').
- set (l1:=map f' l0) in *; clearbody l1.
+ set (l1:=map f' l0) in *; clearbody l1.
clear f' f H0 l0 Hm Hm' m m'.
induction l1.
simpl; auto.
@@ -848,16 +848,16 @@ Proof.
apply IHl1; auto.
apply Inf_lt with (t1, None (A:=elt'')); auto.
Qed.
-
-Definition at_least_one (o:option elt)(o':option elt') :=
- match o, o' with
- | None, None => None
+
+Definition at_least_one (o:option elt)(o':option elt') :=
+ match o, o' with
+ | None, None => None
| _, _ => Some (o,o')
end.
-Lemma combine_1 :
- forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m') (x:key),
- find x (combine m m') = at_least_one (find x m) (find x m').
+Lemma combine_1 :
+ forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m') (x:key),
+ find x (combine m m') = at_least_one (find x m) (find x m').
Proof.
induction m.
intros.
@@ -881,32 +881,32 @@ Proof.
destruct a as (k,e); destruct a0 as (k',e'); simpl.
inversion Hm; inversion Hm'; subst.
destruct (X.compare k k'); simpl;
- destruct (X.compare x k);
+ destruct (X.compare x k);
elim_comp || destruct (X.compare x k'); simpl; auto.
rewrite IHm; auto; simpl; elim_comp; auto.
rewrite IHm; auto; simpl; elim_comp; auto.
rewrite IHm; auto; simpl; elim_comp; auto.
change (find x (combine ((k, e) :: m) m') = at_least_one None (find x m')).
- rewrite IHm'; auto.
+ rewrite IHm'; auto.
simpl find; elim_comp; auto.
change (find x (combine ((k, e) :: m) m') = Some (Some e, find x m')).
- rewrite IHm'; auto.
+ rewrite IHm'; auto.
simpl find; elim_comp; auto.
- change (find x (combine ((k, e) :: m) m') =
+ change (find x (combine ((k, e) :: m) m') =
at_least_one (find x m) (find x m')).
- rewrite IHm'; auto.
+ rewrite IHm'; auto.
simpl find; elim_comp; auto.
Qed.
-Definition at_least_one_then_f (o:option elt)(o':option elt') :=
- match o, o' with
- | None, None => None
+Definition at_least_one_then_f (o:option elt)(o':option elt') :=
+ match o, o' with
+ | None, None => None
| _, _ => f o o'
end.
-Lemma map2_0 :
- forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m') (x:key),
- find x (map2 m m') = at_least_one_then_f (find x m) (find x m').
+Lemma map2_0 :
+ forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m') (x:key),
+ find x (map2 m m') = at_least_one_then_f (find x m) (find x m').
Proof.
intros.
rewrite <- map2_alt_equiv.
@@ -915,7 +915,7 @@ Proof.
assert (H2:=combine_sorted Hm Hm').
set (f':= fun p : oee' => f (fst p) (snd p)).
set (m0 := combine m m') in *; clearbody m0.
- set (o:=find x m) in *; clearbody o.
+ set (o:=find x m) in *; clearbody o.
set (o':=find x m') in *; clearbody o'.
clear Hm Hm' m m'.
generalize H; clear H.
@@ -984,10 +984,10 @@ Qed.
(** Specification of [map2] *)
-Lemma map2_1 :
+Lemma map2_1 :
forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m')(x:key),
- In x m \/ In x m' ->
- find x (map2 m m') = f (find x m) (find x m').
+ In x m \/ In x m' ->
+ find x (map2 m m') = f (find x m) (find x m').
Proof.
intros.
rewrite map2_0; auto.
@@ -997,10 +997,10 @@ Proof.
rewrite (find_1 Hm' H).
destruct (find x m); simpl; auto.
Qed.
-
-Lemma map2_2 :
- forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m')(x:key),
- In x (map2 m m') -> In x m \/ In x m'.
+
+Lemma map2_2 :
+ forall m (Hm : sort (@ltk elt) m) m' (Hm' : sort (@ltk elt') m')(x:key),
+ In x (map2 m m') -> In x m \/ In x m'.
Proof.
intros.
destruct H as (e,H).
@@ -1008,9 +1008,9 @@ Proof.
rewrite (find_1 (map2_sorted Hm Hm') H).
generalize (@find_2 _ m x).
generalize (@find_2 _ m' x).
- destruct (find x m);
+ destruct (find x m);
destruct (find x m'); simpl; intros.
- left; exists e0; auto.
+ left; exists e0; auto.
left; exists e0; auto.
right; exists e0; auto.
discriminate.
@@ -1020,31 +1020,31 @@ End Elt3.
End Raw.
Module Make (X: OrderedType) <: S with Module E := X.
-Module Raw := Raw X.
+Module Raw := Raw X.
Module E := X.
Definition key := E.t.
-Record slist (elt:Type) :=
+Record slist (elt:Type) :=
{this :> Raw.t elt; sorted : sort (@Raw.PX.ltk elt) this}.
-Definition t (elt:Type) : Type := slist elt.
+Definition t (elt:Type) : Type := slist elt.
-Section Elt.
- Variable elt elt' elt'':Type.
+Section Elt.
+ Variable elt elt' elt'':Type.
Implicit Types m : t elt.
- Implicit Types x y : key.
+ Implicit Types x y : key.
Implicit Types e : elt.
Definition empty : t elt := Build_slist (Raw.empty_sorted elt).
Definition is_empty m : bool := Raw.is_empty m.(this).
Definition add x e m : t elt := Build_slist (Raw.add_sorted m.(sorted) x e).
Definition find x m : option elt := Raw.find x m.(this).
- Definition remove x m : t elt := Build_slist (Raw.remove_sorted m.(sorted) x).
+ Definition remove x m : t elt := Build_slist (Raw.remove_sorted m.(sorted) x).
Definition mem x m : bool := Raw.mem x m.(this).
Definition map f m : t elt' := Build_slist (Raw.map_sorted m.(sorted) f).
Definition mapi (f:key->elt->elt') m : t elt' := Build_slist (Raw.mapi_sorted m.(sorted) f).
- Definition map2 f m (m':t elt') : t elt'' :=
+ Definition map2 f m (m':t elt') : t elt'' :=
Build_slist (Raw.map2_sorted f m.(sorted) m'.(sorted)).
Definition elements m : list (key*elt) := @Raw.elements elt m.(this).
Definition cardinal m := length m.(this).
@@ -1056,9 +1056,9 @@ Section Elt.
Definition Empty m : Prop := Raw.Empty m.(this).
Definition Equal m m' := forall y, find y m = find y m'.
- Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
- (forall k, In k m <-> In k m') /\
- (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb cmp m m' : Prop := @Raw.Equivb elt cmp m.(this) m'.(this).
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqk elt.
@@ -1095,7 +1095,7 @@ Section Elt.
Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
Proof. intros m; exact (@Raw.remove_3 elt m.(this) m.(sorted)). Qed.
- Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
+ Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
Proof. intros m; exact (@Raw.find_1 elt m.(this) m.(sorted)). Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof. intros m; exact (@Raw.find_2 elt m.(this)). Qed.
@@ -1104,9 +1104,9 @@ Section Elt.
Proof. intros m; exact (@Raw.elements_1 elt m.(this)). Qed.
Lemma elements_2 : forall m x e, InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof. intros m; exact (@Raw.elements_2 elt m.(this)). Qed.
- Lemma elements_3 : forall m, sort lt_key (elements m).
+ Lemma elements_3 : forall m, sort lt_key (elements m).
Proof. intros m; exact (@Raw.elements_3 elt m.(this) m.(sorted)). Qed.
- Lemma elements_3w : forall m, NoDupA eq_key (elements m).
+ Lemma elements_3w : forall m, NoDupA eq_key (elements m).
Proof. intros m; exact (@Raw.elements_3w elt m.(this) m.(sorted)). Qed.
Lemma cardinal_1 : forall m, cardinal m = length (elements m).
@@ -1116,22 +1116,22 @@ Section Elt.
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof. intros m; exact (@Raw.fold_1 elt m.(this)). Qed.
- Lemma equal_1 : forall m m' cmp, Equivb cmp m m' -> equal cmp m m' = true.
+ Lemma equal_1 : forall m m' cmp, Equivb cmp m m' -> equal cmp m m' = true.
Proof. intros m m'; exact (@Raw.equal_1 elt m.(this) m.(sorted) m'.(this) m'.(sorted)). Qed.
Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equivb cmp m m'.
Proof. intros m m'; exact (@Raw.equal_2 elt m.(this) m.(sorted) m'.(this) m'.(sorted)). Qed.
End Elt.
-
- Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
+
+ Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof. intros elt elt' m; exact (@Raw.map_1 elt elt' m.(this)). Qed.
- Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
- In x (map f m) -> In x m.
+ Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
+ In x (map f m) -> In x m.
Proof. intros elt elt' m; exact (@Raw.map_2 elt elt' m.(this)). Qed.
Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
- (f:key->elt->elt'), MapsTo x e m ->
+ (f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof. intros elt elt' m; exact (@Raw.mapi_1 elt elt' m.(this)). Qed.
Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
@@ -1139,58 +1139,58 @@ Section Elt.
Proof. intros elt elt' m; exact (@Raw.mapi_2 elt elt' m.(this)). Qed.
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
- (x:key)(f:option elt->option elt'->option elt''),
- In x m \/ In x m' ->
- find x (map2 f m m') = f (find x m) (find x m').
- Proof.
- intros elt elt' elt'' m m' x f;
+ (x:key)(f:option elt->option elt'->option elt''),
+ In x m \/ In x m' ->
+ find x (map2 f m m') = f (find x m) (find x m').
+ Proof.
+ intros elt elt' elt'' m m' x f;
exact (@Raw.map2_1 elt elt' elt'' f m.(this) m.(sorted) m'.(this) m'.(sorted) x).
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
- (x:key)(f:option elt->option elt'->option elt''),
+ (x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
- Proof.
- intros elt elt' elt'' m m' x f;
+ Proof.
+ intros elt elt' elt'' m m' x f;
exact (@Raw.map2_2 elt elt' elt'' f m.(this) m.(sorted) m'.(this) m'.(sorted) x).
Qed.
End Make.
-Module Make_ord (X: OrderedType)(D : OrderedType) <:
-Sord with Module Data := D
+Module Make_ord (X: OrderedType)(D : OrderedType) <:
+Sord with Module Data := D
with Module MapS.E := X.
Module Data := D.
-Module MapS := Make(X).
+Module MapS := Make(X).
Import MapS.
Module MD := OrderedTypeFacts(D).
Import MD.
-Definition t := MapS.t D.t.
+Definition t := MapS.t D.t.
Definition cmp e e' := match D.compare e e' with EQ _ => true | _ => false end.
-Fixpoint eq_list (m m' : list (X.t * D.t)) { struct m } : Prop :=
- match m, m' with
+Fixpoint eq_list (m m' : list (X.t * D.t)) : Prop :=
+ match m, m' with
| nil, nil => True
- | (x,e)::l, (x',e')::l' =>
- match X.compare x x' with
+ | (x,e)::l, (x',e')::l' =>
+ match X.compare x x' with
| EQ _ => D.eq e e' /\ eq_list l l'
| _ => False
- end
+ end
| _, _ => False
end.
Definition eq m m' := eq_list m.(this) m'.(this).
-Fixpoint lt_list (m m' : list (X.t * D.t)) {struct m} : Prop :=
- match m, m' with
+Fixpoint lt_list (m m' : list (X.t * D.t)) : Prop :=
+ match m, m' with
| nil, nil => False
| nil, _ => True
| _, nil => False
- | (x,e)::l, (x',e')::l' =>
- match X.compare x x' with
+ | (x,e)::l, (x',e')::l' =>
+ match X.compare x x' with
| LT _ => True
| GT _ => False
| EQ _ => D.lt e e' \/ (D.eq e e' /\ lt_list l l')
@@ -1209,9 +1209,9 @@ Proof.
destruct a; unfold equal; simpl; intuition.
destruct a as (x,e).
destruct p as (x',e').
- unfold equal; simpl.
+ unfold equal; simpl.
destruct (X.compare x x'); simpl; intuition.
- unfold cmp at 1.
+ unfold cmp at 1.
MD.elim_comp; clear H; simpl.
inversion_clear Hl.
inversion_clear Hl'.
@@ -1258,7 +1258,7 @@ Qed.
Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
Proof.
- intros (m,Hm); induction m;
+ intros (m,Hm); induction m;
intros (m', Hm'); destruct m'; unfold eq; simpl;
try destruct a as (x,e); try destruct p as (x',e'); auto.
destruct (X.compare x x'); MapS.Raw.MX.elim_comp; intuition.
@@ -1267,17 +1267,16 @@ Proof.
Qed.
Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
-Proof.
- intros (m1,Hm1); induction m1;
- intros (m2, Hm2); destruct m2;
- intros (m3, Hm3); destruct m3; unfold eq; simpl;
- try destruct a as (x,e);
- try destruct p as (x',e');
+Proof.
+ intros (m1,Hm1); induction m1;
+ intros (m2, Hm2); destruct m2;
+ intros (m3, Hm3); destruct m3; unfold eq; simpl;
+ try destruct a as (x,e);
+ try destruct p as (x',e');
try destruct p0 as (x'',e''); try contradiction; auto.
- destruct (X.compare x x');
- destruct (X.compare x' x'');
- MapS.Raw.MX.elim_comp.
- intuition.
+ destruct (X.compare x x');
+ destruct (X.compare x' x'');
+ MapS.Raw.MX.elim_comp; intuition.
apply D.eq_trans with e'; auto.
inversion_clear Hm1; inversion_clear Hm2; inversion_clear Hm3.
apply (IHm1 H1 (Build_slist H6) (Build_slist H8)); intuition.
@@ -1285,16 +1284,15 @@ Qed.
Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
Proof.
- intros (m1,Hm1); induction m1;
- intros (m2, Hm2); destruct m2;
- intros (m3, Hm3); destruct m3; unfold lt; simpl;
- try destruct a as (x,e);
- try destruct p as (x',e');
+ intros (m1,Hm1); induction m1;
+ intros (m2, Hm2); destruct m2;
+ intros (m3, Hm3); destruct m3; unfold lt; simpl;
+ try destruct a as (x,e);
+ try destruct p as (x',e');
try destruct p0 as (x'',e''); try contradiction; auto.
- destruct (X.compare x x');
- destruct (X.compare x' x'');
- MapS.Raw.MX.elim_comp; auto.
- intuition.
+ destruct (X.compare x x');
+ destruct (X.compare x' x'');
+ MapS.Raw.MX.elim_comp; intuition.
left; apply D.lt_trans with e'; auto.
left; apply lt_eq with e'; auto.
left; apply eq_lt with e'; auto.
@@ -1307,9 +1305,9 @@ Qed.
Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
Proof.
- intros (m1,Hm1); induction m1;
- intros (m2, Hm2); destruct m2; unfold eq, lt; simpl;
- try destruct a as (x,e);
+ intros (m1,Hm1); induction m1;
+ intros (m2, Hm2); destruct m2; unfold eq, lt; simpl;
+ try destruct a as (x,e);
try destruct p as (x',e'); try contradiction; auto.
destruct (X.compare x x'); auto.
intuition.
@@ -1322,20 +1320,20 @@ Ltac cmp_solve := unfold eq, lt; simpl; try Raw.MX.elim_comp; auto.
Definition compare : forall m1 m2, Compare lt eq m1 m2.
Proof.
- intros (m1,Hm1); induction m1;
- intros (m2, Hm2); destruct m2;
+ intros (m1,Hm1); induction m1;
+ intros (m2, Hm2); destruct m2;
[ apply EQ | apply LT | apply GT | ]; cmp_solve.
- destruct a as (x,e); destruct p as (x',e').
- destruct (X.compare x x');
+ destruct a as (x,e); destruct p as (x',e').
+ destruct (X.compare x x');
[ apply LT | | apply GT ]; cmp_solve.
- destruct (D.compare e e');
+ destruct (D.compare e e');
[ apply LT | | apply GT ]; cmp_solve.
assert (Hm11 : sort (Raw.PX.ltk (elt:=D.t)) m1).
inversion_clear Hm1; auto.
assert (Hm22 : sort (Raw.PX.ltk (elt:=D.t)) m2).
inversion_clear Hm2; auto.
- destruct (IHm1 Hm11 (Build_slist Hm22));
+ destruct (IHm1 Hm11 (Build_slist Hm22));
[ apply LT | apply EQ | apply GT ]; cmp_solve.
Qed.
-End Make_ord.
+End Make_ord.