summaryrefslogtreecommitdiff
path: root/theories/FSets/FMapAVL.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FMapAVL.v')
-rw-r--r--theories/FSets/FMapAVL.v20
1 files changed, 10 insertions, 10 deletions
diff --git a/theories/FSets/FMapAVL.v b/theories/FSets/FMapAVL.v
index c761e2a7..980cfeac 100644
--- a/theories/FSets/FMapAVL.v
+++ b/theories/FSets/FMapAVL.v
@@ -32,9 +32,9 @@ Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.
preservation *)
Module Raw (Import I:Int)(X: OrderedType).
-Open Local Scope pair_scope.
-Open Local Scope lazy_bool_scope.
-Open Local Scope Int_scope.
+Local Open Scope pair_scope.
+Local Open Scope lazy_bool_scope.
+Local Open Scope Int_scope.
Definition key := X.t.
Hint Transparent key.
@@ -603,12 +603,12 @@ Qed.
Lemma lt_leaf : forall x, lt_tree x (Leaf elt).
Proof.
- unfold lt_tree in |- *; intros; intuition_in.
+ unfold lt_tree; intros; intuition_in.
Qed.
Lemma gt_leaf : forall x, gt_tree x (Leaf elt).
Proof.
- unfold gt_tree in |- *; intros; intuition_in.
+ unfold gt_tree; intros; intuition_in.
Qed.
Lemma lt_tree_node : forall x y l r e h,
@@ -1388,8 +1388,8 @@ Lemma fold_equiv_aux :
L.fold f (elements_aux acc s) a = L.fold f acc (fold f s a).
Proof.
simple induction s.
- simpl in |- *; intuition.
- simpl in |- *; intros.
+ simpl; intuition.
+ simpl; intros.
rewrite H.
simpl.
apply H0.
@@ -1399,11 +1399,11 @@ Lemma fold_equiv :
forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A),
fold f s a = fold' f s a.
Proof.
- unfold fold', elements in |- *.
- simple induction s; simpl in |- *; auto; intros.
+ unfold fold', elements.
+ simple induction s; simpl; auto; intros.
rewrite fold_equiv_aux.
rewrite H0.
- simpl in |- *; auto.
+ simpl; auto.
Qed.
Lemma fold_1 :