diff options
Diffstat (limited to 'theories/Classes/SetoidDec.v')
-rw-r--r-- | theories/Classes/SetoidDec.v | 35 |
1 files changed, 16 insertions, 19 deletions
diff --git a/theories/Classes/SetoidDec.v b/theories/Classes/SetoidDec.v index 8a069343..bac64724 100644 --- a/theories/Classes/SetoidDec.v +++ b/theories/Classes/SetoidDec.v @@ -1,4 +1,3 @@ -(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) @@ -10,10 +9,10 @@ (* Decidable setoid equality theory. * * Author: Matthieu Sozeau - * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud + * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud * 91405 Orsay, France *) -(* $Id: SetoidDec.v 11282 2008-07-28 11:51:53Z msozeau $ *) +(* $Id: SetoidDec.v 11800 2009-01-18 18:34:15Z msozeau $ *) Set Implicit Arguments. Unset Strict Implicit. @@ -27,12 +26,12 @@ Require Export Coq.Classes.SetoidClass. Require Import Coq.Logic.Decidable. -Class DecidableSetoid A [ Setoid A ] := +Class DecidableSetoid `(S : Setoid A) := setoid_decidable : forall x y : A, decidable (x == y). (** The [EqDec] class gives a decision procedure for a particular setoid equality. *) -Class (( s : Setoid A )) => EqDec := +Class EqDec `(S : Setoid A) := equiv_dec : forall x y : A, { x == y } + { x =/= y }. (** We define the [==] overloaded notation for deciding equality. It does not take precedence @@ -52,7 +51,7 @@ Open Local Scope program_scope. (** Invert the branches. *) -Program Definition nequiv_dec [ EqDec A ] (x y : A) : { x =/= y } + { x == y } := swap_sumbool (x == y). +Program Definition nequiv_dec `{EqDec A} (x y : A) : { x =/= y } + { x == y } := swap_sumbool (x == y). (** Overloaded notation for inequality. *) @@ -60,10 +59,10 @@ Infix "=/=" := nequiv_dec (no associativity, at level 70). (** Define boolean versions, losing the logical information. *) -Definition equiv_decb [ EqDec A ] (x y : A) : bool := +Definition equiv_decb `{EqDec A} (x y : A) : bool := if x == y then true else false. -Definition nequiv_decb [ EqDec A ] (x y : A) : bool := +Definition nequiv_decb `{EqDec A} (x y : A) : bool := negb (equiv_decb x y). Infix "==b" := equiv_decb (no associativity, at level 70). @@ -75,19 +74,19 @@ Require Import Coq.Arith.Arith. (** The equiv is burried inside the setoid, but we can recover it by specifying which setoid we're talking about. *) -Program Instance eq_setoid A : Setoid A := - equiv := eq ; setoid_equiv := eq_equivalence. +Program Instance eq_setoid A : Setoid A | 10 := + { equiv := eq ; setoid_equiv := eq_equivalence }. Program Instance nat_eq_eqdec : EqDec (eq_setoid nat) := - equiv_dec := eq_nat_dec. + eq_nat_dec. Require Import Coq.Bool.Bool. Program Instance bool_eqdec : EqDec (eq_setoid bool) := - equiv_dec := bool_dec. + bool_dec. Program Instance unit_eqdec : EqDec (eq_setoid unit) := - equiv_dec x y := in_left. + λ x y, in_left. Next Obligation. Proof. @@ -95,8 +94,8 @@ Program Instance unit_eqdec : EqDec (eq_setoid unit) := reflexivity. Qed. -Program Instance prod_eqdec [ ! EqDec (eq_setoid A), ! EqDec (eq_setoid B) ] : EqDec (eq_setoid (prod A B)) := - equiv_dec x y := +Program Instance prod_eqdec `(! EqDec (eq_setoid A), ! EqDec (eq_setoid B)) : EqDec (eq_setoid (prod A B)) := + λ x y, let '(x1, x2) := x in let '(y1, y2) := y in if x1 == y1 then @@ -108,10 +107,8 @@ Program Instance prod_eqdec [ ! EqDec (eq_setoid A), ! EqDec (eq_setoid B) ] : E (** Objects of function spaces with countable domains like bool have decidable equality. *) -Require Import Coq.Program.FunctionalExtensionality. - -Program Instance bool_function_eqdec [ ! EqDec (eq_setoid A) ] : EqDec (eq_setoid (bool -> A)) := - equiv_dec f g := +Program Instance bool_function_eqdec `(! EqDec (eq_setoid A)) : EqDec (eq_setoid (bool -> A)) := + λ f g, if f true == g true then if f false == g false then in_left else in_right |