summaryrefslogtreecommitdiff
path: root/theories/Classes/RelationClasses.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Classes/RelationClasses.v')
-rw-r--r--theories/Classes/RelationClasses.v9
1 files changed, 5 insertions, 4 deletions
diff --git a/theories/Classes/RelationClasses.v b/theories/Classes/RelationClasses.v
index f95894be..e1de9ee9 100644
--- a/theories/Classes/RelationClasses.v
+++ b/theories/Classes/RelationClasses.v
@@ -13,12 +13,12 @@
Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
91405 Orsay, France *)
-(* $Id: RelationClasses.v 11800 2009-01-18 18:34:15Z msozeau $ *)
+(* $Id: RelationClasses.v 12187 2009-06-13 19:36:59Z msozeau $ *)
Require Export Coq.Classes.Init.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
-Require Export Coq.Relations.Relation_Definitions.
+Require Import Coq.Relations.Relation_Definitions.
(** We allow to unfold the [relation] definition while doing morphism search. *)
@@ -368,7 +368,7 @@ Proof. intro A. exact (@predicate_implication_preorder (cons A (cons A nil))). Q
We give an equivalent definition, up-to an equivalence relation
on the carrier. *)
-Class PartialOrder A eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} :=
+Class PartialOrder {A} eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} :=
partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (inverse R)).
(** The equivalence proof is sufficient for proving that [R] must be a morphism
@@ -377,7 +377,8 @@ Class PartialOrder A eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} :=
Instance partial_order_antisym `(PartialOrder A eqA R) : ! Antisymmetric A eqA R.
Proof with auto.
- reduce_goal. pose proof partial_order_equivalence as poe. do 3 red in poe.
+ reduce_goal.
+ pose proof partial_order_equivalence as poe. do 3 red in poe.
apply <- poe. firstorder.
Qed.