summaryrefslogtreecommitdiff
path: root/theories/Classes/Functions.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Classes/Functions.v')
-rw-r--r--theories/Classes/Functions.v19
1 files changed, 9 insertions, 10 deletions
diff --git a/theories/Classes/Functions.v b/theories/Classes/Functions.v
index 4c844911..998f8cb7 100644
--- a/theories/Classes/Functions.v
+++ b/theories/Classes/Functions.v
@@ -1,4 +1,3 @@
-(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
@@ -13,7 +12,7 @@
Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
91405 Orsay, France *)
-(* $Id: Functions.v 11282 2008-07-28 11:51:53Z msozeau $ *)
+(* $Id: Functions.v 11709 2008-12-20 11:42:15Z msozeau $ *)
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Classes.Morphisms.
@@ -21,22 +20,22 @@ Require Import Coq.Classes.Morphisms.
Set Implicit Arguments.
Unset Strict Implicit.
-Class Injective ((m : Morphism (A -> B) (RA ++> RB) f)) : Prop :=
+Class Injective `(m : Morphism (A -> B) (RA ++> RB) f) : Prop :=
injective : forall x y : A, RB (f x) (f y) -> RA x y.
-Class ((m : Morphism (A -> B) (RA ++> RB) f)) => Surjective : Prop :=
+Class Surjective `(m : Morphism (A -> B) (RA ++> RB) f) : Prop :=
surjective : forall y, exists x : A, RB y (f x).
-Definition Bijective ((m : Morphism (A -> B) (RA ++> RB) (f : A -> B))) :=
+Definition Bijective `(m : Morphism (A -> B) (RA ++> RB) (f : A -> B)) :=
Injective m /\ Surjective m.
-Class MonoMorphism (( m : Morphism (A -> B) (eqA ++> eqB) )) :=
+Class MonoMorphism `(m : Morphism (A -> B) (eqA ++> eqB)) :=
monic :> Injective m.
-Class EpiMorphism ((m : Morphism (A -> B) (eqA ++> eqB))) :=
+Class EpiMorphism `(m : Morphism (A -> B) (eqA ++> eqB)) :=
epic :> Surjective m.
-Class IsoMorphism ((m : Morphism (A -> B) (eqA ++> eqB))) :=
- monomorphism :> MonoMorphism m ; epimorphism :> EpiMorphism m.
+Class IsoMorphism `(m : Morphism (A -> B) (eqA ++> eqB)) :=
+ { monomorphism :> MonoMorphism m ; epimorphism :> EpiMorphism m }.
-Class ((m : Morphism (A -> A) (eqA ++> eqA))) [ ! IsoMorphism m ] => AutoMorphism.
+Class AutoMorphism `(m : Morphism (A -> A) (eqA ++> eqA)) {I : IsoMorphism m}.