summaryrefslogtreecommitdiff
path: root/theories/Bool/Bool.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Bool/Bool.v')
-rw-r--r--theories/Bool/Bool.v308
1 files changed, 162 insertions, 146 deletions
diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v
index ff87eb96..e126ad35 100644
--- a/theories/Bool/Bool.v
+++ b/theories/Bool/Bool.v
@@ -6,9 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Bool.v 8642 2006-03-17 10:09:02Z notin $ i*)
-
-(** ** Booleans *)
+(*i $Id: Bool.v 9246 2006-10-17 14:01:18Z herbelin $ i*)
(** The type [bool] is defined in the prelude as
[Inductive bool : Set := true : bool | false : bool] *)
@@ -16,34 +14,34 @@
(** Interpretation of booleans as propositions *)
Definition Is_true (b:bool) :=
match b with
- | true => True
- | false => False
+ | true => True
+ | false => False
end.
-(*****************)
-(** Decidability *)
-(*****************)
+(*******************)
+(** * Decidability *)
+(*******************)
Lemma bool_dec : forall b1 b2 : bool, {b1 = b2} + {b1 <> b2}.
Proof.
decide equality.
Defined.
-(*******************)
-(** Discrimination *)
-(*******************)
+(*********************)
+(** * Discrimination *)
+(*********************)
Lemma diff_true_false : true <> false.
Proof.
-unfold not in |- *; intro contr; change (Is_true false) in |- *.
-elim contr; simpl in |- *; trivial.
+ unfold not in |- *; intro contr; change (Is_true false) in |- *.
+ elim contr; simpl in |- *; trivial.
Qed.
Hint Resolve diff_true_false : bool v62.
Lemma diff_false_true : false <> true.
Proof.
-red in |- *; intros H; apply diff_true_false.
-symmetry in |- *.
+ red in |- *; intros H; apply diff_true_false.
+ symmetry in |- *.
assumption.
Qed.
Hint Resolve diff_false_true : bool v62.
@@ -51,92 +49,92 @@ Hint Extern 1 (false <> true) => exact diff_false_true.
Lemma eq_true_false_abs : forall b:bool, b = true -> b = false -> False.
Proof.
-intros b H; rewrite H; auto with bool.
+ intros b H; rewrite H; auto with bool.
Qed.
Lemma not_true_is_false : forall b:bool, b <> true -> b = false.
Proof.
-destruct b.
-intros.
-red in H; elim H.
-reflexivity.
-intros abs.
-reflexivity.
+ destruct b.
+ intros.
+ red in H; elim H.
+ reflexivity.
+ intros abs.
+ reflexivity.
Qed.
Lemma not_false_is_true : forall b:bool, b <> false -> b = true.
Proof.
-destruct b.
-intros.
-reflexivity.
-intro H; red in H; elim H.
-reflexivity.
+ destruct b.
+ intros.
+ reflexivity.
+ intro H; red in H; elim H.
+ reflexivity.
Qed.
(**********************)
-(** Order on booleans *)
+(** * Order on booleans *)
(**********************)
Definition leb (b1 b2:bool) :=
match b1 with
- | true => b2 = true
- | false => True
+ | true => b2 = true
+ | false => True
end.
Hint Unfold leb: bool v62.
(* Infix "<=" := leb : bool_scope. *)
(*************)
-(** Equality *)
+(** * Equality *)
(*************)
Definition eqb (b1 b2:bool) : bool :=
match b1, b2 with
- | true, true => true
- | true, false => false
- | false, true => false
- | false, false => true
+ | true, true => true
+ | true, false => false
+ | false, true => false
+ | false, false => true
end.
Lemma eqb_subst :
- forall (P:bool -> Prop) (b1 b2:bool), eqb b1 b2 = true -> P b1 -> P b2.
-Proof.
-unfold eqb in |- *.
-intros P b1.
-intros b2.
-case b1.
-case b2.
-trivial with bool.
-intros H.
-inversion_clear H.
-case b2.
-intros H.
-inversion_clear H.
-trivial with bool.
+ forall (P:bool -> Prop) (b1 b2:bool), eqb b1 b2 = true -> P b1 -> P b2.
+Proof.
+ unfold eqb in |- *.
+ intros P b1.
+ intros b2.
+ case b1.
+ case b2.
+ trivial with bool.
+ intros H.
+ inversion_clear H.
+ case b2.
+ intros H.
+ inversion_clear H.
+ trivial with bool.
Qed.
Lemma eqb_reflx : forall b:bool, eqb b b = true.
Proof.
-intro b.
-case b.
-trivial with bool.
-trivial with bool.
+ intro b.
+ case b.
+ trivial with bool.
+ trivial with bool.
Qed.
Lemma eqb_prop : forall a b:bool, eqb a b = true -> a = b.
Proof.
-destruct a; destruct b; simpl in |- *; intro; discriminate H || reflexivity.
+ destruct a; destruct b; simpl in |- *; intro; discriminate H || reflexivity.
Qed.
(************************)
-(** Logical combinators *)
+(** * Logical combinators *)
(************************)
Definition ifb (b1 b2 b3:bool) : bool :=
match b1 with
- | true => b2
- | false => b3
+ | true => b2
+ | false => b3
end.
Definition andb (b1 b2:bool) : bool := ifb b1 b2 false.
@@ -147,10 +145,10 @@ Definition implb (b1 b2:bool) : bool := ifb b1 b2 true.
Definition xorb (b1 b2:bool) : bool :=
match b1, b2 with
- | true, true => false
- | true, false => true
- | false, true => true
- | false, false => false
+ | true, true => false
+ | true, false => true
+ | false, true => true
+ | false, false => false
end.
Definition negb (b:bool) := if b then false else true.
@@ -165,7 +163,7 @@ Delimit Scope bool_scope with bool.
Bind Scope bool_scope with bool.
(****************************)
-(** De Morgan laws *)
+(** * De Morgan laws *)
(****************************)
Lemma negb_orb : forall b1 b2:bool, negb (b1 || b2) = negb b1 && negb b2.
@@ -179,17 +177,17 @@ Proof.
Qed.
(********************************)
-(** *** Properties of [negb] *)
+(** * Properties of [negb] *)
(********************************)
Lemma negb_involutive : forall b:bool, negb (negb b) = b.
Proof.
-destruct b; reflexivity.
+ destruct b; reflexivity.
Qed.
Lemma negb_involutive_reverse : forall b:bool, b = negb (negb b).
Proof.
-destruct b; reflexivity.
+ destruct b; reflexivity.
Qed.
Notation negb_elim := negb_involutive (only parsing).
@@ -197,68 +195,68 @@ Notation negb_intro := negb_involutive_reverse (only parsing).
Lemma negb_sym : forall b b':bool, b' = negb b -> b = negb b'.
Proof.
-destruct b; destruct b'; intros; simpl in |- *; trivial with bool.
+ destruct b; destruct b'; intros; simpl in |- *; trivial with bool.
Qed.
Lemma no_fixpoint_negb : forall b:bool, negb b <> b.
Proof.
-destruct b; simpl in |- *; intro; apply diff_true_false;
- auto with bool.
+ destruct b; simpl in |- *; intro; apply diff_true_false;
+ auto with bool.
Qed.
Lemma eqb_negb1 : forall b:bool, eqb (negb b) b = false.
Proof.
-destruct b.
-trivial with bool.
-trivial with bool.
+ destruct b.
+ trivial with bool.
+ trivial with bool.
Qed.
Lemma eqb_negb2 : forall b:bool, eqb b (negb b) = false.
Proof.
-destruct b.
-trivial with bool.
-trivial with bool.
+ destruct b.
+ trivial with bool.
+ trivial with bool.
Qed.
Lemma if_negb :
- forall (A:Set) (b:bool) (x y:A),
- (if negb b then x else y) = (if b then y else x).
+ forall (A:Set) (b:bool) (x y:A),
+ (if negb b then x else y) = (if b then y else x).
Proof.
destruct b; trivial.
Qed.
(********************************)
-(** *** Properties of [orb] *)
+(** * Properties of [orb] *)
(********************************)
Lemma orb_true_elim :
forall b1 b2:bool, b1 || b2 = true -> {b1 = true} + {b2 = true}.
Proof.
-destruct b1; simpl in |- *; auto with bool.
+ destruct b1; simpl in |- *; auto with bool.
Defined.
Lemma orb_prop : forall a b:bool, a || b = true -> a = true \/ b = true.
Proof.
-destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
- auto with bool.
+ destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
+ auto with bool.
Qed.
Lemma orb_true_intro :
- forall b1 b2:bool, b1 = true \/ b2 = true -> b1 || b2 = true.
+ forall b1 b2:bool, b1 = true \/ b2 = true -> b1 || b2 = true.
Proof.
-destruct b1; auto with bool.
-destruct 1; intros.
-elim diff_true_false; auto with bool.
-rewrite H; trivial with bool.
+ destruct b1; auto with bool.
+ destruct 1; intros.
+ elim diff_true_false; auto with bool.
+ rewrite H; trivial with bool.
Qed.
Hint Resolve orb_true_intro: bool v62.
Lemma orb_false_intro :
- forall b1 b2:bool, b1 = false -> b2 = false -> b1 || b2 = false.
+ forall b1 b2:bool, b1 = false -> b2 = false -> b1 || b2 = false.
Proof.
-intros b1 b2 H1 H2; rewrite H1; rewrite H2; trivial with bool.
+ intros b1 b2 H1 H2; rewrite H1; rewrite H2; trivial with bool.
Qed.
Hint Resolve orb_false_intro: bool v62.
@@ -266,13 +264,13 @@ Hint Resolve orb_false_intro: bool v62.
Lemma orb_true_r : forall b:bool, b || true = true.
Proof.
-auto with bool.
+ auto with bool.
Qed.
Hint Resolve orb_true_r: bool v62.
Lemma orb_true_l : forall b:bool, true || b = true.
Proof.
-trivial with bool.
+ trivial with bool.
Qed.
Notation orb_b_true := orb_true_r (only parsing).
@@ -296,7 +294,7 @@ Notation orb_b_false := orb_false_r (only parsing).
Notation orb_false_b := orb_false_l (only parsing).
Lemma orb_false_elim :
- forall b1 b2:bool, b1 || b2 = false -> b1 = false /\ b2 = false.
+ forall b1 b2:bool, b1 || b2 = false -> b1 = false /\ b2 = false.
Proof.
destruct b1.
intros; elim diff_true_false; auto with bool.
@@ -319,7 +317,7 @@ Notation orb_neg_b := orb_negb_r (only parsing).
Lemma orb_comm : forall b1 b2:bool, b1 || b2 = b2 || b1.
Proof.
-destruct b1; destruct b2; reflexivity.
+ destruct b1; destruct b2; reflexivity.
Qed.
(** Associativity *)
@@ -330,14 +328,14 @@ Proof.
Qed.
Hint Resolve orb_comm orb_assoc: bool v62.
-(*********************************)
-(** *** Properties of [andb] *)
-(*********************************)
+(*******************************)
+(** * Properties of [andb] *)
+(*******************************)
Lemma andb_prop : forall a b:bool, a && b = true -> a = true /\ b = true.
Proof.
destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
- auto with bool.
+ auto with bool.
Qed.
Hint Resolve andb_prop: bool v62.
@@ -348,7 +346,7 @@ Proof.
Defined.
Lemma andb_true_intro :
- forall b1 b2:bool, b1 = true /\ b2 = true -> b1 && b2 = true.
+ forall b1 b2:bool, b1 = true /\ b2 = true -> b1 && b2 = true.
Proof.
destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
Qed.
@@ -356,24 +354,24 @@ Hint Resolve andb_true_intro: bool v62.
Lemma andb_false_intro1 : forall b1 b2:bool, b1 = false -> b1 && b2 = false.
Proof.
-destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
+ destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
Qed.
Lemma andb_false_intro2 : forall b1 b2:bool, b2 = false -> b1 && b2 = false.
Proof.
-destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
+ destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
Qed.
(** [false] is a zero for [andb] *)
Lemma andb_false_r : forall b:bool, b && false = false.
Proof.
-destruct b; auto with bool.
+ destruct b; auto with bool.
Qed.
Lemma andb_false_l : forall b:bool, false && b = false.
Proof.
-trivial with bool.
+ trivial with bool.
Qed.
Notation andb_b_false := andb_false_r (only parsing).
@@ -383,12 +381,12 @@ Notation andb_false_b := andb_false_l (only parsing).
Lemma andb_true_r : forall b:bool, b && true = b.
Proof.
-destruct b; auto with bool.
+ destruct b; auto with bool.
Qed.
Lemma andb_true_l : forall b:bool, true && b = b.
Proof.
-trivial with bool.
+ trivial with bool.
Qed.
Notation andb_b_true := andb_true_r (only parsing).
@@ -397,7 +395,7 @@ Notation andb_true_b := andb_true_l (only parsing).
Lemma andb_false_elim :
forall b1 b2:bool, b1 && b2 = false -> {b1 = false} + {b2 = false}.
Proof.
-destruct b1; simpl in |- *; auto with bool.
+ destruct b1; simpl in |- *; auto with bool.
Defined.
Hint Resolve andb_false_elim: bool v62.
@@ -405,7 +403,7 @@ Hint Resolve andb_false_elim: bool v62.
Lemma andb_negb_r : forall b:bool, b && negb b = false.
Proof.
-destruct b; reflexivity.
+ destruct b; reflexivity.
Qed.
Hint Resolve andb_negb_r: bool v62.
@@ -415,46 +413,46 @@ Notation andb_neg_b := andb_negb_r (only parsing).
Lemma andb_comm : forall b1 b2:bool, b1 && b2 = b2 && b1.
Proof.
-destruct b1; destruct b2; reflexivity.
+ destruct b1; destruct b2; reflexivity.
Qed.
(** Associativity *)
Lemma andb_assoc : forall b1 b2 b3:bool, b1 && (b2 && b3) = b1 && b2 && b3.
Proof.
-destruct b1; destruct b2; destruct b3; reflexivity.
+ destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Hint Resolve andb_comm andb_assoc: bool v62.
(*******************************************)
-(** *** Properties mixing [andb] and [orb] *)
+(** * Properties mixing [andb] and [orb] *)
(*******************************************)
(** Distributivity *)
Lemma andb_orb_distrib_r :
- forall b1 b2 b3:bool, b1 && (b2 || b3) = b1 && b2 || b1 && b3.
+ forall b1 b2 b3:bool, b1 && (b2 || b3) = b1 && b2 || b1 && b3.
Proof.
-destruct b1; destruct b2; destruct b3; reflexivity.
+ destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Lemma andb_orb_distrib_l :
forall b1 b2 b3:bool, (b1 || b2) && b3 = b1 && b3 || b2 && b3.
Proof.
-destruct b1; destruct b2; destruct b3; reflexivity.
+ destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Lemma orb_andb_distrib_r :
- forall b1 b2 b3:bool, b1 || b2 && b3 = (b1 || b2) && (b1 || b3).
+ forall b1 b2 b3:bool, b1 || b2 && b3 = (b1 || b2) && (b1 || b3).
Proof.
-destruct b1; destruct b2; destruct b3; reflexivity.
+ destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Lemma orb_andb_distrib_l :
- forall b1 b2 b3:bool, b1 && b2 || b3 = (b1 || b3) && (b2 || b3).
+ forall b1 b2 b3:bool, b1 && b2 || b3 = (b1 || b3) && (b2 || b3).
Proof.
-destruct b1; destruct b2; destruct b3; reflexivity.
+ destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
(* Compatibility *)
@@ -475,46 +473,64 @@ Proof.
destruct b1; destruct b2; simpl in |- *; reflexivity.
Qed.
-(***********************************)
-(** *** Properties of [xorb] *)
-(***********************************)
+(*********************************)
+(** * Properties of [xorb] *)
+(*********************************)
-Lemma xorb_false : forall b:bool, xorb b false = b.
+(** [false] is neutral for [xorb] *)
+
+Lemma xorb_false_r : forall b:bool, xorb b false = b.
Proof.
destruct b; trivial.
Qed.
-Lemma false_xorb : forall b:bool, xorb false b = b.
+Lemma xorb_false_l : forall b:bool, xorb false b = b.
Proof.
destruct b; trivial.
Qed.
-Lemma xorb_true : forall b:bool, xorb b true = negb b.
+Notation xorb_false := xorb_false_r (only parsing).
+Notation false_xorb := xorb_false_l (only parsing).
+
+(** [true] is "complementing" for [xorb] *)
+
+Lemma xorb_true_r : forall b:bool, xorb b true = negb b.
Proof.
trivial.
Qed.
-Lemma true_xorb : forall b:bool, xorb true b = negb b.
+Lemma xorb_true_l : forall b:bool, xorb true b = negb b.
Proof.
destruct b; trivial.
Qed.
+Notation xorb_true := xorb_true_r (only parsing).
+Notation true_xorb := xorb_true_l (only parsing).
+
+(** Nilpotency (alternatively: identity is a inverse for [xorb]) *)
+
Lemma xorb_nilpotent : forall b:bool, xorb b b = false.
Proof.
destruct b; trivial.
Qed.
+(** Commutativity *)
+
Lemma xorb_comm : forall b b':bool, xorb b b' = xorb b' b.
Proof.
destruct b; destruct b'; trivial.
Qed.
-Lemma xorb_assoc :
- forall b b' b'':bool, xorb (xorb b b') b'' = xorb b (xorb b' b'').
+(** Associativity *)
+
+Lemma xorb_assoc_reverse :
+ forall b b' b'':bool, xorb (xorb b b') b'' = xorb b (xorb b' b'').
Proof.
destruct b; destruct b'; destruct b''; trivial.
Qed.
+Notation xorb_assoc := xorb_assoc_reverse (only parsing). (* Compatibility *)
+
Lemma xorb_eq : forall b b':bool, xorb b b' = false -> b = b'.
Proof.
destruct b; destruct b'; trivial.
@@ -522,26 +538,26 @@ Proof.
Qed.
Lemma xorb_move_l_r_1 :
- forall b b' b'':bool, xorb b b' = b'' -> b' = xorb b b''.
+ forall b b' b'':bool, xorb b b' = b'' -> b' = xorb b b''.
Proof.
intros. rewrite <- (false_xorb b'). rewrite <- (xorb_nilpotent b). rewrite xorb_assoc.
rewrite H. reflexivity.
Qed.
Lemma xorb_move_l_r_2 :
- forall b b' b'':bool, xorb b b' = b'' -> b = xorb b'' b'.
+ forall b b' b'':bool, xorb b b' = b'' -> b = xorb b'' b'.
Proof.
intros. rewrite xorb_comm in H. rewrite (xorb_move_l_r_1 b' b b'' H). apply xorb_comm.
Qed.
Lemma xorb_move_r_l_1 :
- forall b b' b'':bool, b = xorb b' b'' -> xorb b' b = b''.
+ forall b b' b'':bool, b = xorb b' b'' -> xorb b' b = b''.
Proof.
intros. rewrite H. rewrite <- xorb_assoc. rewrite xorb_nilpotent. apply false_xorb.
Qed.
Lemma xorb_move_r_l_2 :
- forall b b' b'':bool, b = xorb b' b'' -> xorb b b'' = b'.
+ forall b b' b'':bool, b = xorb b' b'' -> xorb b b'' = b'.
Proof.
intros. rewrite H. rewrite xorb_assoc. rewrite xorb_nilpotent. apply xorb_false.
Qed.
@@ -550,24 +566,24 @@ Qed.
Lemma eq_true_iff_eq : forall b1 b2, (b1 = true <-> b2 = true) -> b1 = b2.
Proof.
- intros b1 b2; case b1; case b2; intuition.
+ intros b1 b2; case b1; case b2; intuition.
Qed.
-Notation bool_1 := eq_true_iff_eq. (* Compatibility *)
+Notation bool_1 := eq_true_iff_eq (only parsing). (* Compatibility *)
Lemma eq_true_negb_classical : forall b:bool, negb b <> true -> b = true.
Proof.
destruct b; intuition.
Qed.
-Notation bool_3 := eq_true_negb_classical. (* Compatibility *)
+Notation bool_3 := eq_true_negb_classical (only parsing). (* Compatibility *)
Lemma eq_true_not_negb : forall b:bool, b <> true -> negb b = true.
Proof.
destruct b; intuition.
Qed.
-Notation bool_6 := eq_true_not_negb. (* Compatibility *)
+Notation bool_6 := eq_true_not_negb (only parsing). (* Compatibility *)
Hint Resolve eq_true_not_negb : bool.
@@ -596,7 +612,7 @@ Qed.
Hint Resolve trans_eq_bool.
(*****************************************)
-(** *** Reflection of [bool] into [Prop] *)
+(** * Reflection of [bool] into [Prop] *)
(*****************************************)
(** [Is_true] and equality *)
@@ -605,9 +621,9 @@ Hint Unfold Is_true: bool.
Lemma Is_true_eq_true : forall x:bool, Is_true x -> x = true.
Proof.
-destruct x; simpl in |- *; tauto.
+ destruct x; simpl in |- *; tauto.
Qed.
-
+
Lemma Is_true_eq_left : forall x:bool, x = true -> Is_true x.
Proof.
intros; rewrite H; auto with bool.
@@ -635,7 +651,7 @@ Qed.
(** [Is_true] and connectives *)
Lemma orb_prop_elim :
- forall a b:bool, Is_true (a || b) -> Is_true a \/ Is_true b.
+ forall a b:bool, Is_true (a || b) -> Is_true a \/ Is_true b.
Proof.
destruct a; destruct b; simpl; tauto.
Qed.
@@ -643,13 +659,13 @@ Qed.
Notation orb_prop2 := orb_prop_elim (only parsing).
Lemma orb_prop_intro :
- forall a b:bool, Is_true a \/ Is_true b -> Is_true (a || b).
+ forall a b:bool, Is_true a \/ Is_true b -> Is_true (a || b).
Proof.
destruct a; destruct b; simpl; tauto.
Qed.
Lemma andb_prop_intro :
- forall b1 b2:bool, Is_true b1 /\ Is_true b2 -> Is_true (b1 && b2).
+ forall b1 b2:bool, Is_true b1 /\ Is_true b2 -> Is_true (b1 && b2).
Proof.
destruct b1; destruct b2; simpl in |- *; tauto.
Qed.
@@ -660,42 +676,42 @@ Notation andb_true_intro2 :=
(only parsing).
Lemma andb_prop_elim :
- forall a b:bool, Is_true (a && b) -> Is_true a /\ Is_true b.
+ forall a b:bool, Is_true (a && b) -> Is_true a /\ Is_true b.
Proof.
destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
- auto with bool.
+ auto with bool.
Qed.
Hint Resolve andb_prop_elim: bool v62.
Notation andb_prop2 := andb_prop_elim (only parsing).
Lemma eq_bool_prop_intro :
- forall b1 b2, (Is_true b1 <-> Is_true b2) -> b1 = b2.
+ forall b1 b2, (Is_true b1 <-> Is_true b2) -> b1 = b2.
Proof.
- destruct b1; destruct b2; simpl in *; intuition.
+ destruct b1; destruct b2; simpl in *; intuition.
Qed.
Lemma eq_bool_prop_elim : forall b1 b2, b1 = b2 -> (Is_true b1 <-> Is_true b2).
Proof.
- intros b1 b2; case b1; case b2; intuition.
+ intros b1 b2; case b1; case b2; intuition.
Qed.
Lemma negb_prop_elim : forall b, Is_true (negb b) -> ~ Is_true b.
Proof.
- destruct b; intuition.
+ destruct b; intuition.
Qed.
Lemma negb_prop_intro : forall b, ~ Is_true b -> Is_true (negb b).
Proof.
- destruct b; simpl in *; intuition.
+ destruct b; simpl in *; intuition.
Qed.
Lemma negb_prop_classical : forall b, ~ Is_true (negb b) -> Is_true b.
Proof.
- destruct b; intuition.
+ destruct b; intuition.
Qed.
Lemma negb_prop_involutive : forall b, Is_true b -> ~ Is_true (negb b).
Proof.
- destruct b; intuition.
+ destruct b; intuition.
Qed.