summaryrefslogtreecommitdiff
path: root/theories/Arith/Wf_nat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Wf_nat.v')
-rw-r--r--theories/Arith/Wf_nat.v16
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v
index 6ad640eb..5bc5d2a5 100644
--- a/theories/Arith/Wf_nat.v
+++ b/theories/Arith/Wf_nat.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Wf_nat.v 11072 2008-06-08 16:13:37Z herbelin $ i*)
+(*i $Id$ i*)
(** Well-founded relations and natural numbers *)
@@ -46,9 +46,9 @@ Defined.
(** It is possible to directly prove the induction principle going
back to primitive recursion on natural numbers ([induction_ltof1])
or to use the previous lemmas to extract a program with a fixpoint
- ([induction_ltof2])
+ ([induction_ltof2])
-the ML-like program for [induction_ltof1] is :
+the ML-like program for [induction_ltof1] is :
[[
let induction_ltof1 f F a =
let rec indrec n k =
@@ -58,7 +58,7 @@ let induction_ltof1 f F a =
in indrec (f a + 1) a
]]
-the ML-like program for [induction_ltof2] is :
+the ML-like program for [induction_ltof2] is :
[[
let induction_ltof2 F a = indrec a
where rec indrec a = F a indrec;;
@@ -78,7 +78,7 @@ Proof.
unfold ltof in |- *; intros b ltfafb.
apply IHn.
apply lt_le_trans with (f a); auto with arith.
-Defined.
+Defined.
Theorem induction_gtof1 :
forall P:A -> Set,
@@ -262,7 +262,7 @@ Unset Implicit Arguments.
(** [n]th iteration of the function [f] *)
-Fixpoint iter_nat (n:nat) (A:Type) (f:A -> A) (x:A) {struct n} : A :=
+Fixpoint iter_nat (n:nat) (A:Type) (f:A -> A) (x:A) : A :=
match n with
| O => x
| S n' => f (iter_nat n' A f x)
@@ -271,8 +271,8 @@ Fixpoint iter_nat (n:nat) (A:Type) (f:A -> A) (x:A) {struct n} : A :=
Theorem iter_nat_plus :
forall (n m:nat) (A:Type) (f:A -> A) (x:A),
iter_nat (n + m) A f x = iter_nat n A f (iter_nat m A f x).
-Proof.
+Proof.
simple induction n;
[ simpl in |- *; auto with arith
- | intros; simpl in |- *; apply f_equal with (f := f); apply H ].
+ | intros; simpl in |- *; apply f_equal with (f := f); apply H ].
Qed.